Skip to content

Blog

Red Light Therapy & Traumatic Brain Injury

Red Light Therapy & Traumatic Brain Injury

    What is Traumatic Brain Injury? Traumatic Brain Injury (TBI) occurs when the brain is damaged by an external force, like an impact, blast, or rapid acceleration/deceleration. Common causes of TBI include falls, sports injuries, vehicle accidents, and physical assaults. Damage from TBI’s can lead to long-lasting and even permanent impairment of brain function. TBI’s are common injuries in the US, with approximately 1.5 million Americans experiencing a TBI annually.    TBI is considered an umbrella term that refers to any brain injury caused by an external source. TBI’s can be categorized by severity, ranging from mild to severe, and have unique characteristics: Mild TBI – Causes temporary confusion and headache. Moderate TBI – Causes prolonged confusion and cognitive impairment. Severe TBI – Causes significant cognitive deficits and long-term complications. TBI’s can also be categorized by timeframe, including both acute (short-term) and chronic (long-term) effects. The acute phase last from hours to weeks, while the chronic phase lasts from weeks to years, depending on the severity of the TBI.    Two TBI-related terms that may be familiar to people are concussions and Chronic  Traumatic Encephalopathy (CTE). Concussions are a type of mild TBI, and although symptoms usually resolve within days to weeks, they can still have long-term effects, especially with multiple incidents. One potential long-term consequence of repeated concussions is CTE, a progressive neurodegenerative disease believed to be caused by repeated head injuries, including multiple mild TBIs.  Treatment for TBI varies greatly depending on the severity of the injury. In general, it involves stabilization, symptom management, and rehabilitation. The primary goal of treatment during the acute phase is to protect brain tissue and focuses on cognitive rest and addressing symptoms. In the chronic phase, the primary goal of treatment is to restore cognitive, motor, and emotional function.  Emerging treatments such as Red Light Therapy may be beneficial in supporting the brain during both the acute and Shop Red Light Therapy Head Wrap   How does TBI affect the Brain Before we consider how Red Light Therapy may be used to support brain health following TBI, let’s take a closer look at the three major pathological processes that occur in the brain during this type of injury.    Neuroinflammation: TBI causes neuroinflammation, which occurs in the hours to days following the injury. Neuroinflammation is inflammation of the brain, which can be helpful in the short term but is harmful when prolonged, leading to chronic neurodegeneration. Excess neuroinflammation is linked to brain fog, mood disorders, and an increased risk of neurodegenerative diseases such as CTE. Oxidative stress: Following a TBI, the brain produces excessive amount of reactive oxygen species (ROS), which can lead to oxidative stress. Oxidative stress can overwhelm our antioxidant defenses and cause damage to cells in the brain, worsening brain injury.  Impaired brain energy metabolism: TBI impairs brain energy metabolism, particularly the ability of the brain to use glucose, which leads to a metabolic crisis where neurons are deprived of energy. After an initial phase of excessive glucose use, there is a decrease in glucose availability that can last from days to weeks, which makes neurons more vulnerable to damage and impairs healing. These three factors interact and include many overlapping molecules. For example, both neuroinflammation and impaired brain energy metabolism can lead to an increase in ROS production, further worsening oxidative stress. Similarly, impaired energy metabolism exacerbates neuroinflammation. This creates a self-perpetuating cycle of damage, which is why TBI recovery can be slow and why some people experience persistent symptoms for weeks, months, or even years following the injury. How does Red Light Therapy support brain function? Red Light Therapy is a promising tool for supporting the brain during TBI because it targets all three foundational brain pathologies, including neuroinflammation, oxidative stress, and impaired brain energy metabolism. Using both red and near infrared light (especially near infrared, which has deeper penetration), Red Light Therapy delivers wavelengths that interact with light sensitive molecules inside brain cells.      Here's how Red Light Therapy affects neuroinflammation, oxidative stress, and brain energy metabolism:  Neuroinflammation: Red and near infrared light wavelengths have anti-inflammatory effects, and unlike anti-inflammatory medications (such as NSAID’s), do not cause side effects. Studies have found that light therapy affects levels of many molecules involved in inflammation, including ROS, reactive nitrogen species, and prostaglandins. Red and near infrared light therapy have specifically shown to reduce neuroinflammation.  Oxidative stress:  Light is absorbed in cells by molecules called chromophores, many of which are found inside the mitochondria. Mitochondria are involved in regulating the production the ROS that cause oxidative stress when present in high amounts. Light therapy has been shown to modulate oxidative stress and ROS production. Impaired brain energy metabolism: Through its impact on mitochondria, light also affects metabolism. In addition to regulating ROS production, mitochondria also make ATP, which is the energy currency of the cell, via a chain of molecules that includes cytochrome c oxidase. Cytochrome c oxidase is activated by both red and near infrared light, which increases ATP synthesis and provides more energy to brain cells. As well, there are additional effects of Red Light Therapy in the brain that may help to support healing from TBI. This includes increasing brain blood flow, supporting brain adaptability, and regulating neuron cell death. Collectively, there are many ways in which Red Light Therapy may be used therapeutically in TBI, and these have been explored in several clinical and pre-clinical studies of both acute and chronic TBI.   Is there evidence to support the use of Red Light Therapy in TBI? Yes! Red Light Therapy has been investigated in several studies of TBI using a range of different experimental approaches. These studies can be broken down by timeframe into both acute and chronic TBI, as well as by study type, including clinical (using humans as subjects) and pre-clinical (using animals as subjects).   Acute TBI The acute phase of TBI immediately follows the onset of injury. Unfortunately, this creates some challenge in coordinating and executing research studies, since it is difficult to recruit human subjects into a research study who have just experienced a head injury. As a result, most of the research in this TBI phase has been done using animals given a head injury in a controlled environment. In a 2023 systematic review of 17 animal studies that used Red Light Therapy immediately post-TBI, it was found that early light therapy intervention could improve neurological outcomes and reduce the size of trauma-associated brain lesions. Optimal results were associated with both red and near infrared light, initiation within 4 hours post-injury, and up to three daily treatments. One human study was included in the review of Red Light Therapy for acute TBI, which suggested safety and feasibility, but treatment efficacy could not be determined.     Chronic TBI Many more human studies have explored the use of Red Light Therapy in the chronic phase of TBI, which occurs weeks to months after the initial trauma. In a 2024 review of 16 human studies, overall improvements in neuropsychological outcomes and increased cerebral blood flow following transcranial PBM were observed. Here are some highlights of the clinical research findings:         How can I use Red Light Therapy in TBI? 2019 study of 12 military veterans with chronic TBI lasting more than 18 months – Following six weeks of application of both red and near infrared light to the head using LED lights, neuropsychological scores and brain blood flow were improved.  2020 case report of 23-year professional hockey player with a history of concussions, and symptoms of headaches, mild anxiety, and difficulty concentrating - Following 8 weeks of application of near infrared light to the head using LED lights, many positive findings were observed, including increased brain volume, improved brain connectivity, increased brain blood flow, and improved neuropsychological test scores. 2023 study of four retired professional football players with suspected CTE – Following application of near infrared light to the head using LED lights three times per week for six weeks, a wide range of improvements were noted, including improved sleep, reduced depression, decreased PTSD, and decreased pain. Analysis of brain function showed several improvements.    Collectively, research looking at the use of Red Light Therapy to support healing from TBI has yielded positive outcomes, both subjective (such as improved mood and decreased pain), and objective (such as increased brain volume and blood flow). There is stronger support for the use of Red Light Therapy in chronic TBI, but pre-clinical evidence supports the potential for benefit during the acute phase of injury.    TBI Recovery Managing TBI involves a combination of stabilization, symptom relief, and rehabilitation, each playing a crucial role in recovery. Red Light Therapy is a safe and effective tool that can support healing throughout all three stages. While it can be conveniently done at home using a Red Light Therapy device, professional supervision is recommended during the acute phase to ensure safe and effective application.   When exploring the range of available options, here are four things to consider: Light wavelength – The wavelength of light determines its color, with red light in the range of 620-700nm and near infrared light in the range of 700-1100nm. Although near infrared has been used most often to support healing from TBI, some studies have also found benefit from red light. Light with wavelengths between 600 and 1300nm have been found to penetrate maximally into the brain. So, look for products that provide both RL and NIRL in combination. Light intensity - Light intensity refers to the amount of light being delivered by a device, also referred to as power density. Studies of Red Light Therapy and TBI have used a range of intensities, from 10-100mW/cm2, and there is no clear indication that a particular intensity must be used. Devices across a range of intensities may provide benefit, and consumers aren’t limited to a specific intensity range. Type of device - Your personal level of comfort with a device is important. If it isn’t easy to use, and if it doesn’t feel good on your body, you probably won’t use it consistently. Many consumers find the most convenient devices to use are wireless, with a rechargeable battery. It is also important to use a device that can be adjusted to fit snugly on the head. Think about your personal preferences and choose a device that fits your criteria. Light Source - Light therapy is administered using either laser or LED lights. While early light therapy research was done using lasers, LED lights have become much more popular over the last decade. For at home use, look for a device that uses LED lights as safe and affordable option.   The next step after selecting a Red Light Therapy device is to determine the treatment protocol. During the acute phase of TBI, it is recommended to consult with your health care provider to get their professional guidance regarding the most appropriate protocol for your case. During the chronic phase of TBI, support from a health care professional is also recommended, but people may be more independent during this period. Based on available clinical research, 10-40 minute treatment sessions, 3 to 5 times a week, are recommended. Do not exceed more than one session every 24 hours.   Conclusion Red Light Therapy is a safe, affordable, and highly effective tool for supporting at-home recovery from TBI. By targeting the three core drivers of brain injury—oxidative stress, impaired metabolism, and neuroinflammation—it offers a scientifically backed approach to healing. Research suggests benefits across all stages of TBI, from the critical early hours to years post-injury. When choosing a device, look for red and near-infrared LED technology that aligns with your needs for comfort and convenience, empowering you to take an active role in your recovery.   Shop Red Light Therapy Head Wrap   For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/

Learn more
Incandescent vs LED Lights in Red Light Therapy

Incandescent vs LED Lights in Red Light Therapy

    Red Light Therapy has been investigated in thousands of research studies over the last 50 years. Until the early 2000’s, most studies used lasers as the light source, but more recently, LED lights have become popular due to their affordability, safety, and ease of at-home use. LED lights are now widely used in Red Light Therapy devices, including the devices we make at Fringe. Other light sources, such as incandescent lights, are also sometimes promoted for use in Red Light Therapy, but it’s important to recognize that incandescent lights are not equivalent to LED’s when it comes to reaping the well-recognized benefits of this powerful healing modality.   In this article, we’ll explore the characteristics of LED and incandescent lights, how the two light types can (and cannot) be used in Red Light Therapy, and what to look for in a Red Light Therapy device.  Comparison of LED and Incandescent Lights LED lights have many important characteristics that are superior to incandescent lights, including: Characteristics LED  Incandescent Energy Efficiency 80-90% more efficient than incandescent, as most energy is converted to light Very inefficient – 90 to 95% of energy is lost as heat, and only 5 to 10% is converted to light Lifespan 25,000 to 50,000 hours (10 to 25x longer than incandescent) 1,000 to 2,000 hours (needs frequent replacement Heat Output Minimal heat emission, stays cool to the touch High heat emission, can become too hot to touch Long-Term Cost Lower long-term cost due to energy savings and longer lifespan Higher long-term cost due to frequent replacements and high energy use Durability Shock-resistant, does not break easily Fragile, glass can break easily Environmental Impact Eco-friendly, no toxic materials, low energy consumption Higher energy use, shorter lifespan, increases waste There are also some areas where LED’s can be inferior to incandescent lights, including: Characteristics LED  Incandescent Flicker Potential Some LEDs flicker which can cause eye strain No flicker; provides continuous, steady light EMF Emission May emit higher EMF’s due to electronic drivers Minimal EMF emission, since it does not use electronic drivers Blue Light Exposure Can be quite high Low, more natural warm light   However, NONE of these characteristics are necessarily an issue with Red Light Therapy devices. Why we don’t NECESSARILY need to be concerned about these limitations (Flicker, EMF, Blue Light Exposure) with Red Light Therapy devices: Many Red Light Therapy devices do not flicker – a reputable company will demonstrate this using third party testing (we do!) EMF emission – it’s absolutely true that a LOT of Red Light Therapy devices emit way too many EMF’s, but they don’t have to. At Fringe, we’ve designed our panels so that the electronic driver is 3 feet away from the panel, so there is almost no EMF emission from the panel itself. Our wraps are battery powered; batteries create energy through chemical reactions, which generate negligeable EMF’s.  Blue Light Exposure – Red Light Therapy devices contain red and near infrared LED’s, which don’t emit blue light (of course, blue light LED’s are also an option…!) What about Blue Light Therapy using LED’s? Isn’t blue light from LED lights harmful? This is true but isn’t the whole story.  Blue light from devices like ipads, phones, etc. is found in a very narrow spectrum of wavelengths. This is “foreign” to our body, as it is different than the blue light that comes from the sun. In contrast, blue light used in Blue Light Therapy emits a wider spectrum of wavelengths that closely mimics the distribution of blue light in sunlight. This light spectrum has been found to be antimicrobial, which is why it is used for applications like acne.  No matter what, though, it’s still important to avoid getting blue light in the eyes. Is light from an incandescent light the same as from an LED? Incandescent lights produce light in a “full spectrum”, including red and near (and also far) infrared light. This is what makes the light from incandescents “warm” in terms of color, and also generates a lot of heat, making them hot to the touch. It’s also why these lights are used for things like heating terrariums. In order to make an incandescent light exclusively red, a red film or coating is placed on the glass that filters out other colors allowing only the red (and sometimes infrared) wavelengths to pass through. The filament inside still produces other colors, but they’re mostly blocked by the coating.  LED lights used in Red Light Therapy will produce light in the red (if using red diodes) or near infrared (if using near infrared diodes) spectrums. Many devices include both types of diode, and the type of light is produced by using a semiconductor material that naturally produces red or near infrared light. Red Light Therapy doesn’t use white LED lights like you would find in a house lamp.  Red and near infrared light are the same in terms of wavelength no matter what the source. The difference is that incandescent lights produce full spectrum light and then block the other light from being emitted, while LED lights (red or near infrared) emit ONLY the light in that color spectrum. If the red and near infrared light is the same, can incandescent lights be used instead of LED’s in Red Light Therapy? Incandescent lights CAN be used to activate the eye to brain pathway that is responsible for some of the benefits of Red Light Therapy. In this pathway, photoreceptors in the retina are activated and influence the function of the suprachiasmatic nucleus in the brain. This helps regulate the circadian cycle and also has an influence on mood and stress hormones. These lights are great for lighting up a room. Incandescent lights CANNOT be used as easily as LED’s to activate the light to tissue pathway that is responsible for the majority of benefits of Red Light Therapy. In this pathway, light enters through the skin (or other tissue) and activates photoreceptors in cells, such as cytochrome c oxidase in mitochondria. To achieve this benefit, the skin/tissue has to be close (6 inches or less) away from the light source. Because incandescent lights get hot and are fragile, they aren’t a substitute for durable LED’s that don’t generate much heat. Incandescent bulbs also generate scattered light, which doesn’t allow for good skin/tissue penetration. There is limited research showing that under some circumstances, incandescent lights may activate this pathway, but their functional limitations do not make them a substitute for LED’s.  Most of the benefits of Red Light Therapy (reduced inflammation, faster tissue healing, reduced oxidative stress) comes from the light to tissue pathway. Incandescent lights do not work to activate this pathway effectively. It’s also important to note that almost none of the benefits of Red Light Therapy that have been observed in thousands of research studies over the last 50 years used incandescent light, with most studies using laser or LED light.  How do I know if my Red Light Therapy device is safe to use? Here are some things to look for: Use of red and near infrared light in evidence-based spectrums. Fringe Red Light Therapy devices use red light at 660nm and near infrared light at 850nm, which have been demonstrated in many research studies to be beneficial. No flicker Low to no EMF’s. Low irradiance (this is also called power or intensity. And yup, you want this low. A lot of companies are selling products that are quite high intensity, and this can potentially be harmful). Irradiance in the range of 20-40mW/cm2 mimics the sun, and has been shown in multiple research studies to be both safe and effective.  A good company will prove these by sharing analyses done by third party testing.  Why choose Fringe Red Light Therapy devices? We use evidence-backed wavelengths of red and near infrared light. Our devices are no flicker and generate low to no EMF’s.  We use a safe and effective sun-like intensity of light, at between 20 and 40mW/cm2. All of our products are tested by an independent third party lab, and we share this analysis with our consumers. Our products are created by a team of medical professionals who carefully review and use published scientific evidence to inform how we manufacture.   Take home message: Incandescent lights are a great option for lighting up a room, creating a warm and ambient red light that may have benefits related to activation of the eye to brain pathway which helps to regulate the circadian rhythm and mood. Incandescent lights cannot be used as a substitute for LED lights to activate the tissue to cell pathway that is responsible for benefits including reduced inflammation, decreased oxidative stress, and improved tissue healing.  Of the thousands of research studies on Red Light Therapy, only a small number used incandescent lights, so their clinical efficacy has not been clearly demonstrated. High-quality Red Light Therapy devices will use both red and near infrared LED lights and will be no flicker, generate low to no EMFS, and deliver light at a sun-like intensity that is both safe and effective for everyone, including kids and pets. 

Learn more
Light Therapy & Menopause

Light Therapy & Menopause

Menopause Menopause is the natural transition that occurs when a woman stops menstruating, which usually happens between the ages of 40 and 58. The term “transition” refers to a change from one state to another, which is a very apt descriptor for what happens during menopause. Hormonally speaking, menopause marks a shift to an entirely new hormonal milieu, which not surprisingly, can be quite challenging.  Hormonal Changes During Menopause The hormonal changes that accompany menopause are dramatic. From perimenopause (the stage leading up to menopause) to post-menopause (the stage following menopause), levels of estrogen and progesterone drop to a fraction of their previous levels. This sharp decline is not linear, instead showing fluctuations that can create a whirlwind of physical and psychological symptoms. Levels of testosterone also decrease during this transition.   The effects of menopause The effects of menopause on the brain and body are similarly dramatic. Although these vary widely between individuals, there are many common symptoms, including hot flashes, loss of libido, vaginal dryness, sleep issues, weight gain, dry skin, hair thinning, digestive changes, sexual dysfunction, urinary symptoms (including incontinence) and mood disturbances. Some menopausal symptoms are local, occurring mainly in the pelvic region, while others (such as hot flashes) are felt throughout the body. Similarly, some symptoms are transient while others cause persistent and long-term physical changes.  The experience of menopausal symptoms is extremely common. Overall, it is estimated that 75-80% of women suffer from symptoms related to menopause, of which 20-30% are considered severe. Approximately 75% of women worldwide experience hot flashes, while 40-60% suffer from sleep issues. As many as 83% of women report experiencing vaginal dryness, often with associated pain during intercourse. Research has found that 9 in 10 women weren’t educated about menopause, and since talking about these symptoms has long been viewed as “taboo”, women often suffer menopause symptoms in silence, leaving them unable to access tools that might help to alleviate them.  Improving access to supportive tools during menopause is a critical public health issue. This includes natural and alternative therapies, as well as novel tools such as light therapy. Light - including red, near infrared, and blue light – may help to alleviate several of the challenging symptoms of menopause, including sleep and mood issues, vaginal dryness and atrophy, hair loss, overactive bladder, sexual dysfunction, cognitive and digestive changes, and skin problems. Read on to learn how light therapy can be used to support women’s health during this important transitional period. Light therapy Before we can explore how light therapy can be used to support women’s health during menopause, we first need to answer the question: what is light therapy? The answer is really quite simple. Light therapy (also known as photobiomodulation) is the application of light with specific wavelengths to the body for the purposes of influencing biology. In theory, light therapy can use any wavelength of light, but the most commonly used are red, near infrared, and blue. The use of red and near infrared light is commonly referred to as “red light therapy”. All three wavelengths of light may be useful in supporting women during menopause, although red and near infrared light have the greatest utility.   Research has shown that light therapy has many effects on a cellular level. Briefly, with red and/or near infrared light, the most notable observed effects include an increased production of cellular energy, reduced inflammation, decreased oxidative stress, decreased pain, increased blood flow, enhanced collagen and supportive tissue production, and improved microbiome health (gut and vagina). Blue light is mainly used to destroy pathogenic microorganisms like yeast and bacteria.  Light Therapy & Menopause Given that there is such a wide range of menopausal symptoms (note that for simplicity, symptoms related to peri-, meno- and post-menopause are being considered here as “menopausal” symptoms), it is likely that the various physiological effects of light therapy will be more or less relevant for certain ones.  For example, some of the changes seen during menopause – such as vaginal atrophy, dryness, and urinary incontinence - are due in part to a decrease in blood flow and loss of connective tissue in the pelvis. While specific research into using light therapy to treat these symptoms is still sparce, researchers have proposed that based on existing scientific evidence, red light therapy may alleviate these symptoms by stimulating the production of collagen and elastin, supporting bladder function, and enhancing blood flow.    Many symptoms of menopause are also experienced in other states, and we can look to those conditions for clues regarding how to use light therapy to alleviate the same symptoms during menopause. This includes anxiety and depression, hair loss, sleep disturbances, acne, digestive issues, and infections. While research specific to these symptoms in menopausal women is lacking, there is clear evidence that light therapy (with red, near infrared, and/or blue light) can be helpful in other conditions, and we can extrapolate from there to the menopausal state. Based on the known physiological effects of light therapy, and the evidence of benefits in a range of clinical conditions, we propose that the use of red, near infrared, and/or blue light may help to alleviate several of the most common symptoms experienced by women during this life transition, including: Mood: Mood changes are a common experience during menopause, with many women reporting increases in anxiety and depression. Light therapy (with red and near infrared light) has been shown to reduce depressive symptoms in both humans and animals, likely due to improvements in mitochondrial function, increased brain blood flow, and decreased neuroinflammation. A 2009 clinical trial found a reduction in symptoms of depression and anxiety in as little as a single session. The effects of light therapy on mental health are so compelling that a recent systematic review concluded that it is “strongly recommended” as a treatment for moderate depressive disorder and is “recommended” for the treatment of anxiety disorder. Studies of red light therapy and depression often apply light therapy directly to the skull, while some use an intranasal approach. Cognition: Cognitive changes, such as memory loss, are also commonly experienced by women during menopause. Researchers have shown in a series of controlled clinical studies that near infrared light therapy improves cognition in young and middle-aged healthy adults when applied to the prefrontal cortex of the brain. Cognitive improvements were accompanied by changes in brain function, including increased brain blood flow. In 2019, a meta-analysis of all the research looking at the effects of light therapy (including near infrared light, or near infrared and red light in combination) found that the overall effect on cognition was positive, leading the authors to conclude that light therapy is a “cognitive-enhancing intervention in healthy individuals”.                                    Hair Loss: Menopausal women frequently report hair loss and thinning. The ability of light therapy to induce hair growth was observed in studies conducted more than 50 years ago. Early clinical trials used primarily red light, and the effectiveness of these studies led to the development of several red light therapy devices for hair loss. Subsequent studies have shown that near infrared light also stimulates hair growth, with red and near infrared light improving hair growth in androgenetic alopecia, which is the most common type of hair loss that affects both men and women. Light impacts hair growth through effects on mitochondria, which lead to increases in the length of time the hair follicle spends in the growth phase.                                                                                             Overactive Bladder: Overactive bladder, involving a frequent urge to urinate, is a urinary symptom experienced during menopause. Overactive bladder often results in urinary incontinence. Although research related to light therapy and overactive bladder is limited, one study found that application of red light to the abdomen three times per day for 12 weeks resulted in a reduction of urinary incontinence as compared to a control group, suggesting a potential benefit in this condition.    Skin Changes: During menopause, many women report skin changes, including acne, dryness, altered pigmentation and wrinkles. Light therapy has been widely used in spas and dermatology clinics for its effects on skin health, in addition to at-home use. Red and near infrared light is helpful in the treatment of wrinkles,  psoriasis, acne, hyperpigmentation, and rosacea, while blue light is helpful in the treatment of acne. Studies show results such as smoother skin; wrinkle reduction and improved skin elasticity; and normalization of skin pigmentation. The effect of red light therapy on wrinkles can be quite dramatic, with one study showing a 30% decrease in eye wrinkle volume. Gut: Gut dysbiosis, involving changes in the gut microbiome, are common around the time of menopause. Estrogen is known to affect the gut microbiome and similarly, some of the microbes in the gut microbiome (called the estrobalome) are able to influence levels of estrogen in the body. Keeping the microbiome healthy during menopause is essential, and light therapy (with red and near infrared light) may provide some support. Animal research has shown that when red or near infrared light was applied to the abdomen of mice, the composition of the microbiome shifted to include more of a bacterial strain that is associated with better health. In humans, red and near infrared light applied to the abdomen of Parkinson’s disease patients modulated the composition of the gut microbiome, with a shift towards more “healthy” bacteria, and in a case report of a patient with breast cancer, application of near infrared light to the abdomen was associated with increased diversity of gut microbes, which is considered to be a healthy change Vaginal Dysbiosis: Similar to the gut, the vagina has a microbiome, and menopause can cause dysbiosis in this region as well. Hormone-induced dysbiosis can increase the vaginal pH and change the composition of the microbes, which is associated with bladder dysfunction and bladder pain syndrome. Light therapy, particularly with red and near infrared light, is proposed as being a positive modulator of the vaginal microbiome. There are several proposed mechanisms, including modulation of nitric oxide. Nitric oxide is important for the lactobacillus species that dominate in the vagina that are known to decrease during menopause.                                                                                                                                    Sleep: As already mentioned, sleep disturbances are experienced by 40-60% of menopausal women. Light is a primary regulator of the body’s circadian rhythm, so it is not surprising that light therapy has effects on sleep. Application of red and near infrared light during wakefulness improves sleep quality in people with cognitive decline, Guillain-Barré Syndrome, fibromyalgia and stroke. When red light therapy is applied during sleep, there is an increased clearance of waste products from the brain and improved flow of cerebrospinal fluid, which are required for optimal brain health. Blue light triggers wakefulness, suppressing melatonin, so direct exposure of the eyes to blue light should be limited to daytime hours. Vaginal Infections: Vaginal infections with yeast and bacteria are more common during menopause due to the changes in estrogen, vaginal pH, and vaginal dryness that occur. In addition to their positive effects on the microbes in the gut and vagina, red and near infrared light have also been shown to have effects on pathogenic (harmful) microorganisms in the female pelvis. Red light has been shown to be helpful in treating vaginal candida, as has blue light. Specifically, blue light at 415nm (the same wavelength as in the Fringe Pelvic Wand) had the most potent anti-candida effects. Blue light has also been shown to be helpful in the treatment of vulvovaginitis. Vaginal Atrophy: Vaginal Atrophy, Dryness & Sexual Dysfunction: The loss of estrogen during menopause causes many changes to the integrity of tissues in the vagina. This results in tissue atrophy and dryness, which can cause great discomfort, especially during sex. The main structural connective tissues are collagen and elastin, which provide strength and flexibility to the vagina. These changes occur for a variety of reasons, including a decrease in blood flow which results from the loss of estrogen. Application of red and near infrared light is known to increase blood flow by increasing levels of nitric oxide. It has also been shown to increase the synthesis of collagen and other supportive connective tissue including elastin. Suggesting that red and near infrared light may help with tissue support and rejuvenation during menopause.  Light Therapy Products for Menopause While early research on light therapy used primarily lasers, more recent research has found that LED’s can also be used, which also have the advantage of applying light to a larger area of the body as well as an improved safety profile. The use of LED in red/near infrared/blue light therapy devices has also greatly reduced the cost of treatment, making it something that can be done in the comfort of one’s own home. A wide range of products are available, each of which is uniquely suited to address specific needs. The four most useful light therapy products to address the symptoms of menopause are: Red light therapy panel Panels usually deliver red and near infrared light, ideally with the option to use separately or in combination. Panels can be used to treat most body parts, including the face, chest and back. They’re great for supporting sleep and mood, when light should be entering through the eyes. They can also support digestion when directed towards the skin of the abdomen, as well as the skin on the face. The Fringe Red Light Therapy Panel delivers both wavelengths of light at the same “sweet spot” intensity as the sun. shop our panel Red light therapy wraps Red Light Therapy Wraps deliver light directly to the skin and can be applied to specific body parts, such as the head and abdomen. They should also deliver both red and near infrared light. Wraps have the advantage of being cordless and very convenient to use. The Fringe Red Light Therapy Head Wrap delivers light to the head (including red and two wavelengths of near infrared light) and is ideally suited to support mood, cognition, and hair loss. The Fringe Red Light Therapy Wrap has a rectangular shape and can be applied to the abdomen to support bladder function and digestion. shop our wraps           Light therapy face mask Like wraps, face masks deliver light directly to the skin but are specifically contoured to the face. Due to the antimicrobial effects of blue light, it should be included in face masks for the treatment of acne along with red and near infrared light. The Fringe Red Light Therapy Face Mask delivers all three wavelengths of light to support skin health, including acne, wrinkles, pigmentation, and more. shop the mask               Light therapy pelvic wand Light therapy pelvic wands are inserted directly into the vagina, delivering light directly to the vaginal tissues that are affected by menopausal hormonal changes. The Fringe Light Therapy Wand delivers red, near infrared, and/or blue light to support blood flow and tissue rejuvenation, which may help alleviate vaginal dryness, atrophy, and sexual dysfunction. shop the wand       To recap Menopause is a time of dramatic hormonal changes, which create uncomfortable symptoms for many women. Light therapy is a safe and effective tool that may be used to alleviate a wide range of menopausal symptoms in the comfort of one’s own home. Red and near infrared light provide support for symptoms including sleep and mood issues, cognitive changes, hair loss, gut and vaginal dysbiosis, skin problems, and vaginal tissue changes, while blue light may provide antimicrobial activity for menopausal acne and vaginal infections. Many different light therapy products are available - including panels, wraps, face masks, and pelvic wands – that provide light therapy support for different symptoms. Choose products that use LED lights to deliver red, infrared red, and blue light (where appropriate) at approximately the same intensity of the sun for best results.  For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/

Learn more
Red Light Therapy vs Ice

Red Light Therapy vs Ice

Red Light Therapy vs Ice. If you were to take a sample of doctors and athletic trainers and ask them what therapy they recommend that people use for post-exercise muscle recovery, you are guaranteed to find that a majority will tell you to apply ice.  Cryotherapy or icing has long been considered the gold standard for dealing with pretty much any kind of inflammatory process, including the muscle inflammation that occurs following strenuous exercise. Cryotherapy is a therapeutic technique that involves exposing the body or specific areas to extremely cold temperatures, typically using ice packs, cold water immersion, or specialized cryochambers. But research has now clearly shown that when you put icing head-to-head with Red Light Therapy – which uses red and/or near infrared light to influence biology - and look at which one works better to support exercise recovery, Red Light Therapy consistently comes out on top. In 2019, a scientific article was published that reviewed three clinical trials and two animal studies comparing cryotherapy to Red Light Therapy. Each human clinical trial administered both red and near infrared light, while the two animal studies used near infrared light only, and light or cryotherapy were applied following exercise. The outcome for each study was post-exercise muscle recovery. All five studies found that Red Light Therapy was superior to cryotherapy at improving outcomes related to exercise recovery. This included decreased delayed onset muscle soreness and reduced muscle inflammation. The research also showed that in contrast to Red Light Therapy, cryotherapy did nothing to prevent muscle damage from occurring following strenuous exercise, since markers of muscle damage like creatine kinase were only reduced with Red Light Therapy.  The superiority of Red Light Therapy over cryotherapy makes perfect sense when you consider the mechanisms of how the two modalities work. In a nutshell, red light therapy stimulates mitochondria to produce energy and modulate oxidative stress, decreasing cellular markers of inflammation. Red Light Therapy also induces cellular changes like increasing the production of growth factors. This is how it can have effects such as decreasing inflammation and healing damaged muscle fibers, and how it can positively influence many aspects of exercise recovery. In contrast, cryotherapy constricts blood vessels and decreases blood flow, which leads to less edema formation (swelling). This might reduce inflammation and decrease pain, but it really does nothing on a cellular level to support healing. In fact, it’s been argued by some experts to do the opposite. Several criticisms of cryotherapy have been raised, including that it only provides temporary relief and does not promote long-term healing. The studies described in this analysis used light that was quite low in intensity. Light intensity refers to the amount of light being delivered by a device. It is also sometimes called irradiance, and it’s usually measured in units called mW/cm2. Red Light Therapy devices on the market vary widely in terms of their intensity. While it’s common to see marketing claims that high intensity products (at upwards of 100mw/cm2) are needed to reap the benefits of Red Light Therapy, this research (and a lot of other studies too), show that this is false.  When it comes to using Red Light Therapy for post-exercise muscle recovery, research has clearly shown that more is not better. Instead of high intensity products, it’s best to use a device that delivers both red and near infrared light at a low to moderate intensity. Fringe Red Light Therapy products are great options for post-exercise support, delivering the optimal intensity of light at between 20 and 40mw/cm2. This is like the intensity of the sun. Fringe Red Light Therapy wraps even have the advantage of being portable and cordless, offering the flexibility of immediate use, including on the sideline! So, the next time you have a hard workout, reach for a Red Light Therapy device instead of ice to support muscle healing. And the advantages of Red Light Therapy over cryotherapy extend to healing for other conditions as well. Basically, you can use Red Light Therapy for anything that you would consider using ice for. By using Red Light Therapy instead, you’ll not only decrease pain and inflammation, but you’ll also activate cellular healing mechanisms that will help you to feel better faster. For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/

Learn more
Light Therapy and Vibration for Female Pelvic Health

Light Therapy and Vibration for Female Pelvic Health

One of our missions at Fringe is to create high quality, evidence-based light therapy products, and to make them readily accessible to consumers. Our goal is to help people heal from the conditions that commonly ail them – like arthritis, post-exercise muscle soreness, and eczema (just to name a few) - in the comfort of their own homes.  Recently, we turned our attention to some of the more common conditions affecting women and those born female at birth specifically: disorders of the female pelvis. Disorders related to female pelvic health (including pelvic floor pain and dysfunction, urinary incontinence, sexual dysfunction, and vaginal infections) are incredibly common, affecting up to 50% of the population at some point in their lives. shop fringe pelvic wand                                         Enter, the fringe pelvic wand In response, we made the Fringe Pelvic Wand - which combines light therapy with vibration, two well-established healing modalities - which may support recovery from these challenging issues.   What is red light? Light therapy (also known as photobiomodulation) is the application of light with specific wavelengths to the body for the purposes of influencing biology. The most common form of light therapy uses red light, which is visible as the color red, and/or near infrared light, which is not visible but can be felt as heat. Blue light is also used in many light therapy products, mainly for its antimicrobial effects. Red, near infrared, and blue light are naturally produced by the sun, which gives off solar radiation. The term radiation describes energy that is transmitted in the form of waves or particles. The spectrum of light in our environment consists of both light we can see (visible light) and light that our eyes can’t perceive (invisible light). This is called the electromagnetic spectrum. The visible light spectrum is quite narrow, consisting of wavelengths that range from 400 to 700nm and span from violet to red in color. Blue and red light are part of this visible light spectrum, while near infrared light is not. Different colors of light have different depths of skin penetration, with red and near infrared light penetrating the deepest.  While early research on light therapy used primarily lasers, more recent research has found that LED’s can also be used, which also have the advantage of applying light to a larger area of the body as well as an improved safety profile. The use of LED in red/near infrared/blue light therapy devices has also greatly reduced the cost of treatment, making it something that can be done in the comfort of one’s own home. Both laser and LED lights have been used in research and practice to support pelvic health. Light therapy delivers light at a measurable level of intensity, which can be generally classified as low, moderate, and high. The intensity of sunlight is between 20 and 40mW/cm2, which is described as the “sweet spot” between higher intensities, which can have harmful effects, and lower intensities, which will have no effect at all. This range is optimal for healing while minimizing adverse effects, and is the range used in the Fringe Pelvic Wand. How might light therapy support female pelvic health? Light therapy may have physiological effects related to female pelvic health, including:                                                       Tissue Rejuvenation Loss of connective tissue, such as collagen and elastin, in the female pelvis is commonly experienced by women as they age and can also occur because of childbirth and infections. Through its effects on mitochondria, light therapy (especially red and near infrared light) may increase cellular energy production and increase connective tissue production. Light therapy may also modulate the production of reactive oxygen species, causing a shift towards tissue rejuvenation rather than breakdown, and may support muscle strengthening.                                                                                                         Reduced Inflammation & Pain Chronic pain is commonly associated with disorders of the pelvic floor, which may also be associated with pelvic inflammation. Light therapy (especially with red and near infrared light) may have powerful effects on inflammation. Studies have found that light therapy may affect levels of many molecules involved in inflammation, including reactive oxygen species, reactive nitrogen species, and prostaglandins.        Increased Blood Flow A decrease in blood flow to tissues in the female pelvis, especially the vagina, occur with age. This loss of blood flow negatively affects tissues by reducing the supply of oxygen and nutrients and contributes to age associated changes such as vaginal atrophy. Light therapy (especially red and near infrared light) may increase blood flow in two ways. First, it may increase levels of nitric oxide through its effects on the mitochondria, which causes vasodilation. The dilation of blood vessels allows more blood to flow through. Second, it may increase angiogenesis, which is the synthesis of new blood vessels. A greater density of blood vessels may increase the delivery of blood to tissues.       Effects on Microorganisms Infections with pathogenic microorganisms in the female pelvis are quite common, and include bacteria (such as chlamydia), fungi (such as candida), and viruses (such as HPV). The vagina also naturally hosts the vaginal microbiome, which has a balance of microorganisms. When imbalanced, susceptibility to infections and bacterial vaginosis is increased. Light may have effects on microorganisms, both pathogenic and non-pathogenic. Blue light may have powerful effects on pathogenic microbes that can infect the vagina, such as candida, while red light may have positive effects on the microbes that comprise the microbiome, including the vaginal microbiome.                                                         Some clinical conditions related to female pelvic health that may improve with light therapy include: Vaginal candidiasis Human papillomavirus and associated vaginitis and cervicitis Vulvovaginitis Chronic pelvic pain Urinary incontinence and sexual dysfunction Overactive bladder Interstitial cystitis/bladder pain syndrome Menopause Episiotomy recovery   What is vibration therapy? Vibration therapy may have physiological effects related to female pelvic health, including: Tissue Rejuvenation Vibration therapy may have many effects on cells associated with the structural integrity of the female pelvic. Collagen in particular may respond to vibration therapy, especially at low magnitudes, and both collagen and muscle formation respond well to low magnitude vibration at between 8 and 10Hz. Increased Blood Flow Vibration therapy may increase blood flow, after as little as 10 minutes of therapy. Increasing blood flow helps to perfuse tissues with oxygen and nutrients and improve function and speed healing.  Muscle Tone Regulation While proper functioning of the pelvic floor muscles is integral to bowel, bladder, and sexual health, in many women these muscles are weak. Others experience chronic hypertonicity in muscles of the pelvic floor, which is also suboptimal. Vibration therapy may regulate muscle tone in two ways. First, it may decrease spasticity in muscles that are overactive. Second, it may improve the potential to voluntarily contract muscles, such as those of the pelvic floor, which are poorly controlled in between 30 and 50% of women, and in this way activate and strengthen the muscle. Muscle tone regulation is accomplished by activating muscles via a spinal reflex and increasing blood flow. Decreased Pain Vibration therapy may reduce many different pain types, including neuropathic pain, low back pain, and muscle pain. This may happen via several mechanisms, such as regulating muscle tone and increasing blood flow. Some clinical conditions related to female pelvic health that may improve with vibration therapy include Urinary incontinence Pelvic floor dysfunction Vulvodynia (a pelvic pain condition) Pelvic pain penetration disorder Sexual dysfunction The Fringe Pelvic Wand The Fringe Pelvic Wand delivers three wavelengths of light via three modes:    + Mode 1 - Deep Rejuvenation MODE ONE - red/near infrared light (630nm & 830nm): delivers both red (630nm) and near infrared (830nm) light to the pelvic tissues. This mode may help with pelvic pain and inflammation; bladder and muscle health; optimizing the vaginal microbiome; increasing the production of collagen and elastin; and improving blood flow and tissue health. Use Mode 1 for deep pelvic rejuvenation if you are NOT sensitive to light or heat. + Mode 2 - Antimicrobial MODE TWO - Blue Light (415 nm): delivers blue light (465nm) to the pelvic tissues. This mode may support the destruction of microbes including fungus and bacteria and healing from yeast infections and bacterial vaginosis. + Mode 3 - Rejuvenation MODE THREE - Red Light (630 nm): delivers only red (630nm) light to the pelvic tissues. This mode may help with pelvic pain and inflammation; bladder and muscle health; optimizing the vaginal microbiome; increasing the production of collagen and elastin; and improving blood flow and tissue health. Use Mode 3 for pelvic rejuvenation if you ARE sensitive to light or heat.     The Fringe Pelvic Wand also delivers optional vibration, via four modes:   + Mode 1 - 10hz (default mode) MODE ONE: provides very low frequency vibration which may help to support muscle relaxation and pain reduction. + Mode 2 - 50hz MODE TWO: provides low/moderate frequency vibration which may help to support muscle relaxation, reduce pain, and increase awareness of pelvic muscle function. Mode 2 can be combined with gentle pelvic floor exercises. + Mode 3 - 90hz MODE THREE: Provides moderate/high frequency vibration that increases awareness of pelvic muscle function and may help to support pelvic muscle contraction. Mode 3 can be combined with moderately active pelvic floor exercises. + Mode 4 - 120hz MODE FOUR: provides high frequency vibration that may help to support strengthening of pelvic muscles. Mode 4 can be combined with active pelvic floor exercises.       Let's get started How to use the fringe pelvic wand Light & Vibration Therapy Safety The safety of light and vibration therapy has been demonstrated in thousands of research studies. However, there are some precautions to be aware of before you begin your therapeutic journey.Photosensitivity is the main contraindication to light therapy. If you are sensitive to light or are using medications that increase light sensitivity (see https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7672668/ for a recent list), you may need to reduce treatment time, interval, and/or frequency, as well as reduce light intensity. Light & Vibration Therapy Safety Here are some other precautions to consider. Please don’t: Exceed the recommended treatment times and frequency. Use on open fresh wounds. Use in combination with lotions, balms or other topical products that contain heat producing ingredients. Use with a non-water based lubricant. If you’re pregnant, we recommend checking with your health care provider to see if they think it’s appropriate for you to use the Fringe Pelvic Health Wand. They can assess your unique health needs and determine if light and vibration therapy is right for you. However, we do know that it’s a great tool to use postpartum when it may help to support healing and recovery of pelvic tissues. Co-Author Elizabeth Frey, FCAMPT, MCISC (MANIP), MSc. PT, MSc, BPHE, BSc, MCPA - Fringe Pelvic Health Advisor Liz holds a BSc and BPHE from Queen’s University; a MSc in Exercise Physiology from the University of Toronto, a MSc (PT) from McMaster University, and a MCISC (Manip) from University of Western Ontario. Liz is a clinic owner and practicing physiotherapist with a specialty in pelvic health physiotherapy. She is a clinical lab facilitator at the University of Toronto, and a clinical supervisor for physiotherapy students. As an orthopaedic and pelvic health physiotherapist, Liz integrates her over 10 years of clinical expertise to provide a unique whole-body approach to wellness. Liz’s practice focuses on helping women navigate pregnancy, menopause, and everything in between. The contents in this blog; such as text, content, graphics are intended for educational purposes only. The Content is not intended to substitute for professional medical advice, diagnosis, or treatment. Always seek the advice of your healthcare provider.  

Learn more
Light Therapy for Brain Health

Light Therapy for Brain Health

Light Therapy for Brain Disorders Our understanding of brain health as being fundamental to our overall well-being dates to the time of the ancient Greeks. “Mens sana in corpore sano”, which translates to “a healthy mind in a healthy body”,  was a foundational part of the Hippocratic philosophy. Hippocrates introduced the first classification of mental disorders and believed that the brain was the organ responsible for mental illnesses. His classes of mental disorders included melancholia, mania, insanity, and others. While those terms are no longer in use today, many modern brain disorder, such as depression and dementia, are foundationally like those ancient classifications. Importantly, Hippocrates believed that “natural” treatments would cure diseases. One such therapy was the use of sunshine, known as “heliotherapy”. shop red light therapy head wrap   Brain disorders In modern society, brain disorders are becoming increasingly prevalent. Also referred to as neurological disorders, these conditions are estimated to be the second leading cause of death, causing 9 million deaths globally each year. While these diseases yield a massive economic burden in terms of health care costs, they also have an enormous impact on our quality of life. The prevalence of brain disorders is expected to increase significantly over the next several decades as the population both ages and grows.      Categories of brain disorders There are several different categories of brain disorders. These include: autoimmune diseases (such as multiple sclerosis – MS), epilepsy, psychiatric disorders (such as depression and anxiety), neurodegenerative diseases (such as Alzheimer’s and Parkinson’s disease), neurodevelopmental disorders (such as ADHD and autism), stroke, traumatic brain injuries (such as concussions and chronic traumatic encephalitis), and brain tumors.     While these disorders are all unique, they share fundamental pathological characteristics. Most involve an increase in oxidative stress, which involves excessive production of reactive oxygen species. The brain is especially vulnerable to oxidative stress because it has a high metabolic rate, and oxidative stress can occur both in chronic diseases (such as Alzheimer’s) and acute conditions (such as concussions). Alterations in brain metabolism are also common, which can precede and co-occur with oxidative stress. Brain metabolism accounts for around 20% of total metabolism, even though it only contributes 2% of total body weight. This makes the brain vulnerable to damage from metabolic effects such as those that occur with aging, poor diet, and trauma.  Neuroinflammation, which involves inflammation in the brain as a response to disease and injury, also occurs. Oxidative stress, impaired metabolism, and neuroinflammation overlap, involving many of the same molecules.  Brain disorders are notoriously difficult to treat. Because the blood brain barrier restricts entry of foreign substances into the brain, drug transport into the brain is limited. We are also limited by our lack of understanding these diseases. Experts admit that we actually know very little about how the brain works, for a variety of reasons. Given this complexity, using non-pharmacological interventions to treat the foundational pathologies of brain diseases (including oxidative stress, impaired metabolism, and neuroinflammation) is a great starting point. Light therapy, or photobiomodulation, is one such approach.               Light therapy Light therapy (also known as photobiomodulation) is the application of light with specific wavelengths to the body for the purposes of influencing biology. The most common form of light therapy uses red light (RL), which is visible as the color red, and/or near infrared light (NIRL), which is not visible but can be felt as heat. The RL used in light therapy usually ranges from 600 to 700 nanometres (nm), with the unit nm referring to distance the light wave travels in one cycle. The NIRL used in light therapy usually ranges from 800 to 900nm.   RL and NIRL are naturally produced by the sun, which gives off solar radiation. The term radiation describes energy that is transmitted in the form of waves or particles. The spectrum of light in our environment consists of both light we can see (visible light) and light that our eyes can’t perceive (invisible light). This is called the electromagnetic spectrum. The visible light spectrum is quite narrow, consisting of wavelengths that range from 400 to 700nm and span from violet to red in color. RL is part of this visible light spectrum, while NIRL is not. Red and near infrared light therapy is the application of artificially generated light in the red and near infrared spectral bands. The term “red light therapy” usually describes the use of both RL and NIRL, although only the red light produced by the device is visible to the naked eye. IRL can still be perceived by the body as heat when it contacts skin. How Does Red Light Therapy Affect Brain Health? Light therapy, specifically the application of red and near infrared light, positively impacts all three foundational pathologies of brain disorders: oxidative stress, impaired metabolism, and neuroinflammation. Oxidative Stress: Light is absorbed in cells by molecules called chromophores, many of which are found inside the mitochondria. Mitochondria are involved in regulating the production the reactive oxygen species that cause oxidative stress when present in high amounts. Light therapy has been shown to modulate oxidative stress and reactive oxygen species production. Impaired Metabolism: Through its impact on mitochondria, light also affects metabolism. In addition to regulating reactive oxygen species production, mitochondria also make the energy currency of the cell, called ATP. Specifically, RL and NIRL stimulates cytochrome c oxidase, a mitochondrial enzyme that produces ATP. This increases ATP synthesis which provides more energy to brain cells. Neuroinflammation: Red and NIRL have anti-inflammatory effects, and unlike anti-inflammatory medications (such as NSAID’s), do not cause side effects. Studies have found that light therapy affects levels of many molecules involved in inflammation, including reactive oxygen species, reactive nitrogen species, and prostaglandins. Red and NIRL therapy have specifically shown to reduce neuroinflammation.  Brain Disorders Treated by Red Light Therapy Since RL and NIRL therapy (hereafter referred to simply as “light therapy”) can positively impact the foundational pathology that characterizes so many brain disorders, it is not surprising that there is evidence to support its use in conditions ranging from Alzheimer’s Disease to traumatic brain injury. Here are the top 10 brain disorders that may benefit from RL and NIRL therapy, as supported by scientific research.    Alzheimer’s Disease & Dementia Alzheimer’s Disease (AD), a form of dementia, is a neurodegenerative disease that comprises 70% of dementia cases. AD affects 1 in 10 US adults over the age of 65, or 5.7 million Americans. AD is a progressive disease that is characterized by memory loss, disorientation, behavior changes, and an eventual loss of independent functioning. Research investigating the use of light therapy for AD is extensive, with dozens of studies published in the last decade. While many studies have used light therapy in animal models of AD, several clinical trials have been published which have shown positive results. Most studies have exclusively used NIRL, which has been found to penetrate more deeply into the brain.    A few studies have used unique research approaches to treating AD with light therapy. For example, a 2022 clinical trial combined light therapy to the brain with RL and NIRL therapy to the gut in patients with mild to moderate AD. The control group received sham, or placebo, light therapy. Patients receiving RL and NIRL showed improved cognitive function relative to the control group. The gut microbiome has been proven to play a role in maintaining brain health, and responds positively to light therapy. Another study combined light therapy with exercise in patients with AD. Patients in both the treatment and control groups participated in a moderate intensity exercise program 3 days per week, 45-60 minutes per session, for 3 months. Patients in the treatment group received NIRL through the nose and on wrist acupuncture points, while those in the control group received a sham light treatment. Both groups improved, but the group receiving NIRL showed more positive change.  Researchers state that there are many benefits of light therapy in AD that occur on a cellular level. These include improving mitochondrial function and increasing ATP production, decreasing neuroinflammation, and decreasing oxidative stress – which have a downstream effect of decreasing brain amyloid plaque accumulation.   While AD is the most common form of dementia, there is also non-Alzheimer’s dementia, which is similarly characterized by memory loss, disorientation, behavior changes, and an eventual loss of independent functioning. Although most research studies distinguish between types of dementia, some do not, and group all forms of dementia together. It’s not clear how important this distinction is, since the disorders share the same foundational pathologies, so light therapy is likely to have a similar impact regardless of the categorization of dementia. However, it’s still worth looking at some of this evidence. Mild cognitive impairment (MCI), which often progress to dementia, is also included here. A 2021 comprehensive review of dementia of all types assessed 10 studies of dementia patients treated with light therapy (either RL or NIRL). While not all studies were considered high quality, every one of them reported positive results. Included here was a study of a patient with mild dementia, as well as one of MCI. This analysis suggests that light therapy can benefit dementia starting from very early stages.  Another mechanism of how light therapy affects the brain of patients with dementia was revealed in a 2021 trial. In this study, cerebral blood flow was analyzed along with cognition. In addition to improvements in cognitive function, patients also had more blood flow in several areas of the brain. The authors suggest this may be due to changes in levels of nitric oxide.       Cognition In addition to improving brain health in people suffering from impaired cognitive function (such as AD, non-Alzheimer’s dementia, and MCI), light therapy has also been found to improve cognition in healthy people. This is quite remarkable, as it shows that the benefits of light therapy are quite universal.     Researchers have shown in a series of controlled clinical studies that light therapy using NIRL improves cognition in young and middle-aged healthy adults when applied to the prefrontal cortex of the brain. Cognitive improvements were accompanied by changes in brain function using tools such as EEG, fMRI, and brain blood flow.  In 2019, a meta-analysis of all the research looking at the effects of light therapy (including either NIRL or NIRL/RL combined) on cognition in healthy subjects was published. Seven studies included subjects aged 17 to 35 while two studies included subjects aged 49 and older. Despite some issues with study quality, the overall effect on cognition was found to be positive, leading the authors to conclude that light therapy is a “cognitive-enhancing intervention in healthy individuals”.       Parkinson's Disease Parkinson’s disease (PD) is a degenerative brain disease that involves damage to dopamine producing neurons in the brain. PD involves motor symptoms (such as balance and gait problems) and non-motor symptoms (such as depression, sleep disorders, and cognitive impairment). PD affects around one million people in the US, and over 10 million people globally.      Studies using light therapy to treat PD patients have shown that it is helpful. For example, one study of patients who used at-home NIRL therapy devices showed improvements in balance, fine motor skills, cognition, and mobility after 12 weeks of treatment. Patients applied the light to the head, neck, and abdomen. Research suggests that in PD, light therapy should be used 2-3 times per week for at least four weeks.  Animal models of PD have been used to try to determine precisely how light therapy is working. A 2020 analysis of 28 animal studies concluded that light therapy, including both RL and NIRL, is “an effective method to treat animal models of PD”. It is suggested that these benefits are due to effects on mitochondria, oxidative stress, and brain metabolism, which may be “helping the brain to repair itself”. The effects of light therapy on mitochondria may be especially important in PD, which involves significant mitochondrial dysfunction.        Stroke Stroke (Ischemic) – Ischemic stroke is a type of cardiovascular disease in which the blood flow to the brain is disrupted. Annually, close to 800 000 people have strokes in the US, with an economic cost of close to 57 billion dollars. Although some people recover fully from a stroke, it can cause permanent disability and death. The risk of stroke increases with age, but it can occur across all age groups.        Light therapy has shown small, but promising, effects in studies with stroke patients. Using NIRL laser light technology, it was found that treatment improved outcomes when used within 24 hours after a stroke. A larger follow up study showed smaller effects, but there was still a positive trend towards better outcomes.  Studies of animal models have shown many benefits when light therapy is used shortly after a stroke occurs. These include increasing the production of new neurons (neurogenesis), decreased inflammation, and improved mitochondrial function. The effects of light on mitochondria is very important in improving stroke outcomes, since mitochondria are responsible for protecting and maintain neurons. Light therapy may work synergistically with other non-invasive treatments for stroke, such as Coenzyme Q10.        Depression Depression – Depression is a highly prevalent mood disorder, affecting at least 21 million people in the US in 2021. Depression disproportionately affects young people, with considerably higher rates in people aged 18-25. While depression is associated with psychosocial factors such as trauma, there is also often an underlying brain pathology. In particular, depression has been associated with impaired functioning of brain mitochondria, neuroinflammation, and oxidative stress. Impaired mitochondrial functioning in depression is not just limited to the brain, but rather is found throughout the body and corresponds with symptom severity.   Given these associations, it is not surprising that light therapy can be used to treat depression. Several clinical trials of light therapy in depression have been conducted, all of which used NIRL applied directly to the head. A 2022 systematic review concluded that NIRL therapy “can be classified as strongly recommended for moderate grade of major depressive disorder”. Similarly, a 2023 meta-analysis concluded that there is a “promising role of in the treatment of depressive symptoms”. Multiple Sclerosis Multiple sclerosis (MS) is an autoimmune neurodegenerative disease that involves the brain and spinal cord. The prevalence of MS has recently been found to be higher than originally thought, affecting nearly 1 million people in the US. The symptoms of MS vary between affected individuals, and include fatigue, gait problems, numbness/tingling, weakness, spasticity, and vision problems. Interestingly, MS prevalence shows a north south gradient, in which people at northern latitudes have more disease. Low sun exposure is a known risk factor for MS, while greater exposure is associated with decreased disease severity. MS involves considerable neuroinflammation, as well as increased oxidative stress.     Since most research related to sun exposure and MS has focused on vitamin D – which is produced from UV light, rather than RL or NIRL – there are only a few studies looking at how RL and NIRL therapy (which does not stimulate vitamin D production) affects MS. However, the research that has been done has been very positive. Notably, only one study (using a mouse model of MS) applied light therapy to the brain, with mice showing improved motor function and decreased brain pathology following treatment. Other animal studies have applied light to the spinal cord, which was also the target of a study with human MS patients. A second study of human MS patients applied light to the inside of the mouth and the radial artery on the wrist. Since MS affects both the brain and the peripheral nervous system, it appears that light therapy can target the multiple areas and still be beneficial.     Autism Spectrum Disorder Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that manifests in childhood. ASD is characterized by difficulties with social interactions, abnormal language, and restricted/repetitive behaviors, interests, and activities. ASD is a term that includes a range of disorders, including both genetic and non-genetic conditions. Some people with ASD are high functioning, while others suffer from serious disability. ASD is highly prevalent, affecting 1 in 36 children in 2020.     Two studies have investigated whether light therapy can be used to improve symptoms of autism. In the first, adults with high functioning ASD received transcranial PBM for 8 weeks. Treatment caused a significant improvement in social responsiveness scores, social awareness, social communication, social motivation, and restricted/repetitive behaviors. In the second, Transcranial PBM with a RL & NIRL laser was used for the treatment of irritability associated with autistic spectrum disorder in children and adolescents aged 5-17 years. Light therapy significantly reduced irritability scores compared to the placebo group, as well as lethargy and social withdrawal, stereotypic behaviour, hyperactivity and non-compliance, and inappropriate speech. Benefits were maintained at both 6 and 12 month follow up. The long-lasting benefits seen in this study are striking, and suggest that brain structure and/or function has improved as a result of treatment with RL and NIRL.       Epilepsy Epilepsy is a brain disorder that causes seizures, which are discharges of electrical activity in the brain. Epilepsy affects 1.2% of the US population, or approximately 3.4 million people. Epilepsy is most commonly treated with drugs, but up to 1/3 of people do not improve with medication. Surgery is another treatment for epilepsy, but it carries some risk.      Although research on light therapy and epilepsy has so far been limited to animal models, the impact of light on seizures and brain health has been positive. A 2022 review article described that “ makes the neurons ‘healthier’ by restoring their function and making them more resistant to distress and disease”. Several animal studies using NIRL have observed positive outcomes, including reduced seizure activity and decreased mortality. This is consistent with research that shows a north south disease gradient with epilepsy, similar to that observed with MS.      Traumatic brain injury / concussion Traumatic brain injuries (TBI) occur when there is a violent blow to the head. Concussions are a common type of TBI. Symptoms include nausea, vomiting, vison and speech problems, and difficulty with memory and concentration. Around 1.7 million people in the US experience a TBI annually, with adolescents aged 15 to 19 and older adults over 65 years being affected more commonly.     Research using light therapy (both RL and NIRL) for TBI has looked at both immediate and chronic effects in animal and human models. Animal studies have shown a reduction in the size of the brain lesion when light therapy was used immediately following trauma, which correlated with the severity of neurological symptoms. Similarly, a case study of a hockey player with a history of six documented concussions using at-home intracranial and intranasal NIRL found improved markers of health using brain imaging. Other human studies looking at behavioral outcomes have observed benefits such as improved sleep, improved cognition, and reduced anxiety and depression.        Chronic Traumatic Encephalitis Chronic traumatic encephalitis (CTE) is a brain disorder caused by repeated head injuries. The injuries damage brain neurons and the condition worsens over time. CTE occurs most commonly in athletes that play contact sports, like football and boxing. CTE highlights the importance of healing traumatic brain injuries, as approximately 17% of people with repeated TBI progress to CTE.     As with TBI, light therapy has been found to benefit CTE. A study of four ex-football players with suspected CTE treated with RL and NIRL to the head found that three of the four players showed improvements in outcomes including depression, pain and sleep. More research is needed to confirm these preliminary findings.   Using Light Therapy for Brain Health There are an increasing number of devices on the market that directly target brain health. Most apply light therapy to the head (often as a hat or helmet), some deliver light to the brain through the nose (intranasally), some target specific areas only (such as the forehead or back of head), and some even shine light on distant areas on the body (such as the abdomen). With so many options available, how can you know which device is best for you? Here are five issues to consider. Style Preference: Your personal level of comfort with a device is important. If it isn’t easy to use, and if it doesn’t feel good on your body, you probably won’t use it consistently. Imagine yourself wearing the device – would you be comfortable wearing a hard helmet, or would you prefer a soft hat? Do you want a device that is wireless, or can you commit to being close to an electrical outlet so that you can plug it in? Do you want the flexibility of being able to lie down while wearing the device? Are you comfortable with having multiple contact points on the body, or would you prefer the device be on only one part? Think about your personal preferences and choose accordingly. Laser vs LED: Light therapy is administered using either laser or LED lights. While early light therapy research was done using lasers, LED lights have become much more popular over the last decade. The research described in this article includes both types of light sources. In 2018, Dr. Michael Hamblin – the world’s leading light therapy expert – concluded that LED lights using comparable parameters to lasers performed “equally well”, which is very important because LED powered light therapy devices can be made at a fraction of the cost of laser devices. Consumers can rest assured that using at home LED powered devices for the treatment of brain disorders is supported by research evidence. For at home use, look for a device that uses LED lights as safe and affordable option. Light Color/Wavelength: As described in this article, both RL and NIRL have been used in studies of light therapy to treat brain disorders. Although NIRL has been used most often, some studies have also found benefit from RL. Light with wavelengths between 600 and 1300nm, in the red and near infrared light spectrums, have been found to penetrate maximally into the brain. So, look for products that provide both RL and NIRL in combination, or NIRL only. Light Intensity: Light intensity refers to the amount of light being delivered by a device. It is also referred to as irradiance. The required intensity when using light therapy to impact brain disorders is unclear. The assumption is often made that for light to influence the brain, it must receive light photons, which must pass through the hair, skin, skull, and cerebrospinal fluid. Studies have found that the deepest penetration comes from higher intensity light sources using NIRL. However, studies have also shown that there are benefits to light therapy that can’t be explained by the depth of light penetration into the brain. For example, cognition and blood flow in the brain have been found to improve when light therapy is applied to the front and back of the neck. Similarly, depressive symptoms improve when light therapy is applied to either the periphery of the body, as well as directly to the brain. Although this isn’t well understand, there are several possible explanations, including effects on superficial blood and lymphatic vessels in the head and neck area as well as connections between the brain and other areas of the body, such as the gut. These “indirect” benefits to the brain from applying light therapy to somewhere on the body are increasingly being recognized as being neuroprotective. The penetration issue has led many companies to develop high intensity devices to support brain health. While these devices have been found to helpful, devices that are lower intensity have been also. Devices across a range of intensities may provide benefit, and consumers aren’t limited to a specific intensity range. Education: While light therapy education will not change the specific functionality of a device, it does have the potential to profoundly impact how someone uses the technology. When a company provides evidence-based education that teaches consumers why, how, and when to use a product, devices can be used to better support healing. Look for products with accompanying education and instructions for use, whether in printed and/or digital formats. You can also look for companies that provide support by phone or email to current or prospective customers.   Conclusion Light therapy with red and near infrared light has shown great promise in supporting brain health. Benefits of treatment have been observed across a wide range of populations, ranging from young healthy adults to elderly people with dementia. Light therapy affects the foundational pathologies that underlie virtually all brain disorders, including oxidative stress, impaired metabolism, and neuroinflammation. This occurs, at least in part, through stimulation of brain mitochondria, which produce energy.  Research using light therapy to support brain health has applied a range of technical specifications, including style of device, light source, light wavelength, and light intensity. Benefits have been observed in most studies, which suggests that consumers have options when it comes to choosing the device that is right for them. Factors such as comfort, cost, and ease of use can be considered. Therapy with RL and NIRL can be used to safely support brain health across the lifespan, making light therapy devices a wise investment for all.     shop red light therapy head wrap   For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/

Learn more
Light Therapy for Inflammation

Light Therapy for Inflammation

Inflammation is one of the most popular topics in healthcare, and rightfully so. It is a hallmark of many diseases currently ravaging modern society, such as arthritis, ulcerative colitis, inflammatory bowel disease, heart disease, diabetes, cancer, Alzheimer’s Disease, and depression. Inflammation is also associated with acute diseases involving the heart, pancreas, liver, and other organs, as well as trauma and infection. The personal and economic burden of these diseases cannot be overstated. Treatment of inflammation associated diseases makes up the majority of health care spending in the US, costing billions of dollars annually. There are also indirect costs of illness, such as reduced work and productivity. The most common treatments for inflammation are pharmaceuticals, including prescription (such as Celebrex) and the over-the-counter drugs (such as Aspirin and Alleve). However, many of these drugs have serious side effects, such as hypersensitivity reactions and ulcers.  Given these risks, many people are turning to non-invasive therapies to fight inflammation, some of which are highly effective and have far fewer side effects than their pharmaceutical counterparts. One of these is treatment with red and near infrared light (also called red light therapy or photobiomodulation), which uses light waves at specific frequencies to decrease inflammation at a cellular level. Red Light Therapy The term “red light therapy” usually describes the use of both red and near infrared light, although only the red light produced by the device is visible to the naked eye. Infrared light can still be perceived by the body as heat when it contacts skin. Red and near infrared light therapy is the application of artificially generated light in the red and near infrared spectral bands.  Red and near infrared light are naturally produced by the sun, which gives off solar radiation. The term radiation describes energy that is transmitted in the form of waves or particles. The spectrum of light in our environment consists of both light we can see (visible light) and light that our eyes can’t perceive (invisible light). This is called the electromagnetic spectrum. The visible light spectrum is quite narrow, consisting of wavelengths that range from 400 to 700nm and span from violet to red in color. Red light is part of this visible light spectrum, while near infrared light is not. While early research on light therapy used primarily lasers, more recent research has found that LED’s can also be used, which also have the advantage of applying light to a larger area of the body as well as an improved safety profile. The use of LED in red/near infrared light therapy devices has also greatly reduced the cost of treatment, making it something that can be done in the comfort of one’s own home.  Inflammation The inflammatory process is mediated by the immune system, specifically the innate (or non-specific) component. Inflammation protects the body from injury and infection. There are many goals of the inflammatory response, including reducing the extent of injury, limiting the spread of infection, and restoring the body back into balance. While we mostly think of inflammation as being harmful, it’s actually a natural and essential physiological function. Inflammation becomes harmful when it is uncontrolled, lasts for a long time, or just generally occurs when it shouldn’t.  There are three types of inflammation, which are mainly defined by their length. Acute inflammation is short term, lasting days. This is what happens when you sprain your ankle, and it swells up, becomes warm, and may show color changes. That response is designed to limit movement, which prevents further injury and allows the damaged tissue to heal. Sub-acute inflammation lasts from two to six weeks, and often follows acute inflammation as healing progresses. The response here is similar, but less intense, than acute inflammation. Chronic inflammation lasts for months or even years, and at this point, inflammation has ceased to be a normal (and healthy) response to a stimulus and has become pathological.  Chronic inflammation is the type that is associated with most diseases. It is also associated with oxidative stress. Chronic inflammation is not associated with visible signs of inflammation (such as redness, heat, and swelling), so people often aren’t even aware it is happening. This contrasts with acute inflammation, which is usually visible and occurs because of trauma or infection.  Red Light Therapy for Inflammation As described by Dr. Michael Hamblin, former Associate Professor at Harvard Medical School, “one of the most reproducible effects of is an overall reduction of inflammation”. Studies have found that light therapy affects levels of many molecules involved in inflammation, including reactive oxygen species, reactive nitrogen species, and prostaglandins. Light therapy has even been found to reduce inflammation in the brain, known as neuroinflammation.  Red light therapy has been shown to have anti-inflammatory effects in the following conditions:  Brain Disorders – Neuroinflammation is one of the foundational pathologies underlying a wide range of brain disorders. Light therapy has been found to decrease inflammation in Alzheimer’s Disease, as well as to improve cognitive function. Several clinical trials have been published which have shown positive results. Most studies have exclusively used near infrared light, which has been found to penetrate more deeply into the brain. Light therapy has also been found to decrease inflammation and improve recovery after a stroke. When used to treat brain disorders, light therapy is usually applied to the head area, using devices such as hats and helmets.  Traumatic Brain Injury - Traumatic brain injuries (TBI) occur when there is a violent blow to the head. Approximately 17% of people with repeated TBI progress to chronic traumatic encephalitis (CTE), a brain disorder caused by repeated head injuries. Concussions are another common type of TBI. TBI’s result in acute neuroinflammation, which can become a chronic problem if not treated properly. Research using light therapy (both red and near infrared) for TBI has looked at both immediate and chronic effects in animal and human models. Animal studies have shown a reduction in the size of the brain lesion when light therapy was applied to the head immediately following trauma, which correlated with the severity of neurological symptoms, which may be due (in part) to decreased inflammation. Depression – Neuroinflammation is similarly found in people suffering from depression, and it is thought to be a key factor and therapeutic target in depressive disorders. Several clinical trials of light therapy in depression have been conducted, all of which used near infrared light applied directly to the head. A 2022 systematic review concluded that light therapy “can be classified as strongly recommended for moderate grade of major depressive disorder”. Similarly, a 2023 meta-analysis concluded that there is a “promising role of in the treatment of depressive symptoms”.  Gut Disorders – Inflammatory gut diseases like colitis and inflammatory bowel diseases may benefit from red light therapy. Research has found that application of red light to the abdomen of rats with experimentally induced colitis (a form of inflammatory bowel disease) improved many markers of gut health, including reducing inflammation. There is interest in studying the use of light therapy to improve gut health in human subjects as well, with research currently ongoing to see if it helps patients with inflammatory bowel disease. When treating gut disorders, light therapy is usually applied directly to the abdomen. Pain - Pain creates a huge burden of disability, both personal and economic. There is evidence that red light therapy decreases many types of pain, including knee, neck, low-back, temporomandibular joint, and post-surgical pain. Red light therapy can also reduce pain associated with arthritis and fibromyalgia. One of the primary mechanisms of pain reduction by light therapy is by decreasing inflammation. Red light therapy also reduces pain by decreasing oxidative stress, reducing the sensitivity of neurons, and decreasing the transmission of pain related nerve impulses.  Arthritis – In addition to reducing arthritis pain by decreasing inflammation, the anti-inflammatory effects of red light therapy on arthritis also yields other benefits. Inflammation in arthritis is responsible for much of the observed pathology, including cartilage breakdown. Treatment with red light therapy may have a range of positive effects, such as preserving joint function, avoiding joint deformities, and reducing drug side effects and toxicities. Delayed Onset Muscle Soreness – Delayed onset muscle soreness (DOMS) is pain that occurs in the muscles between 12 and 24 hours after a workout. DOMS is caused by tiny muscle tears that results in inflammation, which causes pain. Treatment with red light therapy to muscles after a strength training session has been shown to decrease markers of inflammation, as well as to improve other outcomes like decreased fatigue and increased protein synthesis. Injury – In addition to its anti-inflammatory effects on muscle tissue, including speeding recovery from post-exercise damage, red light therapy also reduces inflammation and speeds wound healing, such as from burn injuries. Red light therapy can also reduce inflammation and speed healing from injuries to bone, including fractures and more complex bone injuries that require the use ceramic materials. Tendon injuries also benefit from red light therapy. Skin Disorders – Many skin disorders are characterized by inflammation, including acne, psoriasis and eczema. Light therapies treat acne through anti-inflammatory and antimicrobial effects, and by decreasing the production of oil. Inflammatory acne is more responsive to light therapy than non-inflammatory acne, and studies have even found it to be superior to some medications. Red and near infrared light is also recommended in the treatment of psoriasis in part because of its anti-inflammatory effects. And in eczema, an inflammatory skin disease, treatment with near infrared light therapy has been found to decrease skin itching and lesions. Alopecia Areata – Alopecia Areata (AA) is an autoimmune disease that causes the body to attack its own hair follicles. This causes the hair to fall out, resulting in patches of baldness. AA can affect hair on any part of the body but is most common on the head. It is characterized by inflammation around hair follicles during the growth phase. The anti-inflammatory effects of light therapy may decrease this inflammation. In fact, treatment with red and near infrared light has been found to increase hair growth in bald patches. How To Use Red Light Therapy To Reduce Inflammation There is no single right way to use red light therapy to reduce inflammation. It all depends on what condition you are trying to treat and what your personal preferences are as far as treatment approach. The following are a few simple questions that can be used to guide you towards selecting the device that is most suitable for your needs: 1. What are your specific health concerns? Red light is usually applied to the affected body part, either directly in contact with the skin or at a distance of around 4 to 12 inches away. Some devices are location specific, such as knee wraps, head wraps or helmets, shoulder and neck wraps, or elbow and wrist red light wraps. Other devices are non-specific, such as square or rectangular light wraps, or red light panels. If you are dealing with a single, region-specific concern – such as knee arthritis or Alzheimer’s Disease - you may prefer to get a regionally targeted red light therapy device. However, if you are dealing with inflammation in more than one area of the body and want a device that can be used in multiple locations, a non-specific wrap may be preferable. Red light panels can also be used to address multiple body parts, although they may be difficult to position properly for some locations, such as the feet and ankles.  2. What are your preferred treatment conditions? Treatments using red light panels are most often done in a seated position, with the panel oriented towards the face, neck, torso, or other affected body part. They can also be done in a standing position, although this is not as relaxing. Lying down is possible if the treatment location allows it. Red light panels are wired and require the user to stay in the same position throughout the duration of the treatment. In contrast, treatments using red light wraps can be done in any position, including standing, sitting, and lying down. They can even be worn while moving around. Some red light wraps are wired, while others are wireless, with wireless models providing more flexibility. 3. What device specs should you look for? At home red light therapy devices almost always use LED’s as the light source. However, they do vary in other parameters, such as light wavelength(s) and intensity. When it comes to choosing the optimal wavelengths, you should look for light in the red and/or near infrared spectrums - but avoid the range of 700-780nm which has been found to be ineffective. Multi-wavelength devices including both red and near infrared light may be the most versatile. In terms of intensity, it has been found that it is ideal to mimic the intensity of the sun, which is around 24 mW/cm2 at the skin. This is described as the “sweet spot” between higher intensities, which can have harmful effects, and lower intensities, which will have no effect at all. Many devices on the market are at a much higher intensity than the sun, so choose a sun-mimicking product and don’t overdo it when it comes to treatment frequency and duration. Conclusion Red light therapy (with red and near infrared light) may be used to reduce inflammation in a wide range of diseases, both acute and chronic. There are very few contraindications to red light therapy, and it can be safely used at home as part of a regular wellness regime. Choose a device that suits your needs and preferred treatment conditions, and which delivers both red and near infrared light at an appropriate intensity. Combine red light therapy with an anti-inflammatory diet and supplements, regular exercise, stress management, and good sleep hygiene for best results. For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/

Learn more
Top 10 Evidence-Based Uses for Red Light Therapy

Top 10 Evidence-Based Uses for Red Light Therapy

Red Light Therapy, also known as photobiomodulation (PBM), may be used to support the health of cells and tissues throughout the body.  Defined as the use of red and/or near infrared (NIR) light to influence biology, most modern PBM devices emit both types of light, which have similar effects but penetrate the body to different depths. Red light is visible to the human eye, while infrared light is not, although it can be felt as heat. While early research on PBM used primarily lasers, more recent research has found that LED’s can also be used, which also have the advantage of applying light to a larger area of the body as well as an improved safety profile. The use of LED in red/NIR devices has also greatly reduced the cost of treatment, making it something that can be done in the comfort of one’s own home. There are many mechanisms by which PBM affects the body, with the most well-known being increasing the synthesis of ATP (the energy currency of the cell) through effects on the electron transport chain in the mitochondria. The link between PBM and improved mitochondrial function has been well established. This increased supply of energy can be used to do all kinds of cellular work, including healing, growth, maintenance, and repair. There are thousands of published studies showing the efficacy of PBM for a wide range of health applications, ranging from general support for healthy cells to improving brain function in Alzheimer’s Disease patients.  Here, we will review the top 10 evidence-based uses for PBM, as supported by scientific research: Reduce inflammation: Red and NIR light have anti-inflammatory effects, and unlike anti-inflammatory medications (such as NSAID’s), do not cause side effects. Studies have found that PBM affects levels of many molecules involved in inflammation, including reactive oxygen species, reactive nitrogen species, and prostaglandins. The ability of PBM to reduce inflammation suggests that it could have therapeutic potential in many chronic diseases that involve inflammation, including arthritis, Alzheimer’s Disease, and depression. Improve skin health: Red/NIR lights are being widely used in spas and dermatology clinics for their effects on skin health, in addition to at-home use. As already mentioned, PBM can improve the appearance and healing of scars, and it is also helpful in the treatment of wrinkles,  psoriasis, acne, rosacea, burns, and herpes. As well, PBM has been found to increase hair growth through stimulation of the hair follicle found in the dermis of the skin. Improvements in skin health are associated with increased collagen production in the dermis of the skin.  Decrease pain: Pain creates a huge burden of disability, both personal and economic. There is evidence that PBM decreases many types of pain, including knee, neck, low-back, temporomandibular joint, and post-surgical pain. PBM can also reduce pain associated with arthritis and fibromyalgia. There are several mechanisms of pain reduction by PBM, including decreasing inflammation, decreasing oxidative stress, reducing the sensitivity of neurons, and decreasing the transmission of pain related nerve impulses.  Improve athletic performance: PBM has been found to improve athletic performance in several ways, including decreasing muscle damage associated with exercise, decreasing muscle fatigue, improving muscle capacity, and speeding post-exercise recovery. PBM increases ATP production, which is needed for exercising muscles. PBM also helps muscles through increasing the synthesis of antioxidants, reducing inflammation, and decreasing synthesis of lactic acid (although not all studies have found this effect). Animal research has also shown that PBM can reduce muscle loss associated with trauma.    Reduce depression and anxiety: Depression and anxiety are highly prevalent mental disorders, and currently available pharmaceutical medications have limited efficacy and associated side effects. PBM has been shown to reduce depressive symptoms in both humans and animals, likely due to improvements in mitochondrial function, increased brain blood flow, and decreased neuroinflammation. A 2009 clinical trial found a reduction in symptoms of depression and anxiety in as little as a single session of PBM. The effects of PBM on mental health are so compelling that a recent systematic review of PBM concluded that it is “strongly recommended” as a treatment for moderate depressive disorder and is “recommended” for the treatment of anxiety disorder. Studies of PBM and depression often apply PBM directly to the skull, while some use an intranasal approach.  Improve cognitive function: PBM has been shown to improve cognitive function in both healthy and diseased patients. Clinical trials in healthy subjects have shown that PBM can improve outcomes including executive function, which consists of cognitive skills used for planning and performing tasks, as well as memory. People with traumatic brain injury (TBI) and stroke have also been shown to benefit from PBM, due to upregulation of brain repair mechanisms including the synthesis of new neurons. A recent systematic review similarly showed that PBM can help people with Alzheimer’s Disease by decreasing oxidative stress in the brain, reducing brain inflammation, and improving cognition. Speed healing from injury: It has already been mentioned that PBM has positive effects on muscle tissue, including speeding recovery from post-exercise damage, as well as on wound healing, such as from burn injuries. PBM can also speed healing from injuries to bone, including fractures and more complex bone injuries that require the use ceramic materials. Tendon injuries also benefit from PBM, with research showing that PBM increases the amount of collagen, which provides structural support during healing.  Promote fat loss: A somewhat surprising effect of PBM is to promote fat loss. This is particularly true when combined with exercise. A study of obese women found that PBM combined with exercise resulted in a higher percentage of fat loss than when exercise was combined with a placebo light. Another study found similar results, along with changes in levels of a marker associated with increasing brown adipose tissue, which improves metabolism. When combined with treadmill training, PBM decreases the appearance of cellulite and increases metabolism in the thighs. In addition to effects on metabolism, PBM may also cause fat cells to release their contents into the blood, where they can be metabolized or excreted. Improve immune function: Although an in-depth investigation of how PBM affects the immune system specifically has yet to be done, there is strong evidence that PBM improves immune function, as evidenced by its beneficial effects in many immune-related disorders. For example, in Hashimoto’s thyroiditis (an autoimmune disease affecting the thyroid gland), PBM improved levels of thyroid hormones and decreased the need for medication, probably due to a reduction in inflammation. Similarly, in multiple sclerosis (an autoimmune disease affecting the nervous system), PBM increased the regeneration of nerve cells and decreased markers of inflammation. PBM also improves immune function and inflammation in the oral autoimmune disease oral lichen planus. It has even been shown to improve outcomes of COVID-19 infections, likely by reducing inflammation and improving immune function. The process of inflammation is controlled by the immune system, and many disorders (such as autoimmune diseases), involve an impaired immune response.  Improve sleep: Light is a primary regulator of the body’s circadian rhythm, so it is not surprising that PBM has effects on sleep. Application of PBM during wakefulness improves sleep quality in people with cognitive decline, Guillain-Barré Syndrome, fibromyalgia and stroke. Interestingly, sleep duration decreased with full body PBM in elite athletes, while other parameters such as exercise recovery improved. When PBM is applied during sleep, there is an increased clearance of waste products from the brain and improved flow of cerebrospinal fluid, which are required for optimal brain health. So, PBM is beneficial when applied when either awake or sleeping, and the benefits relate more to improving sleep quality and physiology, rather than to increasing sleep duration.  This list of uses for PBM is not exhaustive. Research exploring the use of PBM is expanding into many areas of health, with exciting results being seen in areas including hypertension, polycystic ovarian syndrome, eye health, and fertility, to name but a few. Truly, the range of applications of PBM for improving health is incredibly vast and can be explained by the cellular and molecular changes induced by light exposure.  If you’re interested in buying a home PBM device, you have many options. When choosing a device, first look for a one that emits both red and NIR light. Second, look at the power of the device. While many high powered PBM units are available (usually at a higher price point), research shows that when it comes to light, more is not necessarily better. This is because PBM treatment to many tissues has a “biphasic” effect, where lower levels are beneficial while higher levels are not. But you don’t want to go too low, or you won’t get the treatment effect. Many of the cheaper devices on the market are underpowered and provide very little irradiation. At Fringe, our PBM devices were designed to mimic exposure to the sun, with consideration of the range of light exposure used in scientific research. Lastly, consider the type of device that is most appropriate for your condition. PBM devices come in panels and wearable forms such as wraps, with wearables providing more flexibility in terms of application and panels being better for general irradiation of larger surfaces.  For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/

Learn more
Red Light Therapy for Chronic Inflammation

Red Light Therapy for Chronic Inflammation

Chronic inflammation has recently been proposed as being the common underlying cause of the “four horsemen of the medical apocalypse”, which are heart disease, diabetes, cancer, and Alzheimer’s Disease. Inflammation has also been suggested as a biological cause of depression. And it is a hallmark of other diseases such as arthritis, ulcerative colitis, and inflammatory bowel disease. Not surprisingly, some of the most widely used drugs are anti-inflammatory medications, both prescription and over the counter. By 2030, the global market for non-steroidal anti-inflammatory drugs (NSAIDS) is projected to reach over 31 billion USD. However, many of these drugs have serious side effects, such as hypersensitivity reactions and ulcers.   Red and near infrared light have anti-inflammatory effects, and unlike medications, do not cause harm. Studies have found that red and near infrared light affect levels of many molecules involved in inflammation, such as prostaglandins. The ability of red and near infrared light to reduce inflammation suggests that it could have therapeutic potential in many chronic diseases that involve inflammation, including arthritis, Alzheimer’s Disease, and depression. Red and near infrared light therapy devices come in panels and wearable forms such as wraps. Wearable wraps provide more flexibility in terms of application while panels are better for general irradiation of larger surfaces. Fringe makes a 12x12 inch red light panel as well as a variety of light therapy wraps that are specific to certain areas (such as the head, knee, shoulder, or elbow) as well as small and large wraps that can be used on most parts of the body. Designed to mimic the intensity of the sun using LED light chips, these products are a great addition to an anti-inflammatory wellness plan. For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/

Learn more