Blog
Light Therapy & Menopause
Menopause Menopause is the natural transition that occurs when a woman stops menstruating, which usually happens between the ages of 40 and 58. The term “transition” refers to a change from one state to another, which is a very apt descriptor for what happens during menopause. Hormonally speaking, menopause marks a shift to an entirely new hormonal milieu, which not surprisingly, can be quite challenging. Hormonal Changes During Menopause The hormonal changes that accompany menopause are dramatic. From perimenopause (the stage leading up to menopause) to post-menopause (the stage following menopause), levels of estrogen and progesterone drop to a fraction of their previous levels. This sharp decline is not linear, instead showing fluctuations that can create a whirlwind of physical and psychological symptoms. Levels of testosterone also decrease during this transition. The effects of menopause The effects of menopause on the brain and body are similarly dramatic. Although these vary widely between individuals, there are many common symptoms, including hot flashes, loss of libido, vaginal dryness, sleep issues, weight gain, dry skin, hair thinning, digestive changes, sexual dysfunction, urinary symptoms (including incontinence) and mood disturbances. Some menopausal symptoms are local, occurring mainly in the pelvic region, while others (such as hot flashes) are felt throughout the body. Similarly, some symptoms are transient while others cause persistent and long-term physical changes. The experience of menopausal symptoms is extremely common. Overall, it is estimated that 75-80% of women suffer from symptoms related to menopause, of which 20-30% are considered severe. Approximately 75% of women worldwide experience hot flashes, while 40-60% suffer from sleep issues. As many as 83% of women report experiencing vaginal dryness, often with associated pain during intercourse. Research has found that 9 in 10 women weren’t educated about menopause, and since talking about these symptoms has long been viewed as “taboo”, women often suffer menopause symptoms in silence, leaving them unable to access tools that might help to alleviate them. Improving access to supportive tools during menopause is a critical public health issue. This includes natural and alternative therapies, as well as novel tools such as light therapy. Light - including red, near infrared, and blue light – may help to alleviate several of the challenging symptoms of menopause, including sleep and mood issues, vaginal dryness and atrophy, hair loss, overactive bladder, sexual dysfunction, cognitive and digestive changes, and skin problems. Read on to learn how light therapy can be used to support women’s health during this important transitional period. Light therapy Before we can explore how light therapy can be used to support women’s health during menopause, we first need to answer the question: what is light therapy? The answer is really quite simple. Light therapy (also known as photobiomodulation) is the application of light with specific wavelengths to the body for the purposes of influencing biology. In theory, light therapy can use any wavelength of light, but the most commonly used are red, near infrared, and blue. The use of red and near infrared light is commonly referred to as “red light therapy”. All three wavelengths of light may be useful in supporting women during menopause, although red and near infrared light have the greatest utility. Research has shown that light therapy has many effects on a cellular level. Briefly, with red and/or near infrared light, the most notable observed effects include an increased production of cellular energy, reduced inflammation, decreased oxidative stress, decreased pain, increased blood flow, enhanced collagen and supportive tissue production, and improved microbiome health (gut and vagina). Blue light is mainly used to destroy pathogenic microorganisms like yeast and bacteria. Light Therapy & Menopause Given that there is such a wide range of menopausal symptoms (note that for simplicity, symptoms related to peri-, meno- and post-menopause are being considered here as “menopausal” symptoms), it is likely that the various physiological effects of light therapy will be more or less relevant for certain ones. For example, some of the changes seen during menopause – such as vaginal atrophy, dryness, and urinary incontinence - are due in part to a decrease in blood flow and loss of connective tissue in the pelvis. While specific research into using light therapy to treat these symptoms is still sparce, researchers have proposed that based on existing scientific evidence, red light therapy may alleviate these symptoms by stimulating the production of collagen and elastin, supporting bladder function, and enhancing blood flow. Many symptoms of menopause are also experienced in other states, and we can look to those conditions for clues regarding how to use light therapy to alleviate the same symptoms during menopause. This includes anxiety and depression, hair loss, sleep disturbances, acne, digestive issues, and infections. While research specific to these symptoms in menopausal women is lacking, there is clear evidence that light therapy (with red, near infrared, and/or blue light) can be helpful in other conditions, and we can extrapolate from there to the menopausal state. Based on the known physiological effects of light therapy, and the evidence of benefits in a range of clinical conditions, we propose that the use of red, near infrared, and/or blue light may help to alleviate several of the most common symptoms experienced by women during this life transition, including: Mood: Mood changes are a common experience during menopause, with many women reporting increases in anxiety and depression. Light therapy (with red and near infrared light) has been shown to reduce depressive symptoms in both humans and animals, likely due to improvements in mitochondrial function, increased brain blood flow, and decreased neuroinflammation. A 2009 clinical trial found a reduction in symptoms of depression and anxiety in as little as a single session. The effects of light therapy on mental health are so compelling that a recent systematic review concluded that it is “strongly recommended” as a treatment for moderate depressive disorder and is “recommended” for the treatment of anxiety disorder. Studies of red light therapy and depression often apply light therapy directly to the skull, while some use an intranasal approach. Cognition: Cognitive changes, such as memory loss, are also commonly experienced by women during menopause. Researchers have shown in a series of controlled clinical studies that near infrared light therapy improves cognition in young and middle-aged healthy adults when applied to the prefrontal cortex of the brain. Cognitive improvements were accompanied by changes in brain function, including increased brain blood flow. In 2019, a meta-analysis of all the research looking at the effects of light therapy (including near infrared light, or near infrared and red light in combination) found that the overall effect on cognition was positive, leading the authors to conclude that light therapy is a “cognitive-enhancing intervention in healthy individuals”. Hair Loss: Menopausal women frequently report hair loss and thinning. The ability of light therapy to induce hair growth was observed in studies conducted more than 50 years ago. Early clinical trials used primarily red light, and the effectiveness of these studies led to the development of several red light therapy devices for hair loss. Subsequent studies have shown that near infrared light also stimulates hair growth, with red and near infrared light improving hair growth in androgenetic alopecia, which is the most common type of hair loss that affects both men and women. Light impacts hair growth through effects on mitochondria, which lead to increases in the length of time the hair follicle spends in the growth phase. Overactive Bladder: Overactive bladder, involving a frequent urge to urinate, is a urinary symptom experienced during menopause. Overactive bladder often results in urinary incontinence. Although research related to light therapy and overactive bladder is limited, one study found that application of red light to the abdomen three times per day for 12 weeks resulted in a reduction of urinary incontinence as compared to a control group, suggesting a potential benefit in this condition. Skin Changes: During menopause, many women report skin changes, including acne, dryness, altered pigmentation and wrinkles. Light therapy has been widely used in spas and dermatology clinics for its effects on skin health, in addition to at-home use. Red and near infrared light is helpful in the treatment of wrinkles, psoriasis, acne, hyperpigmentation, and rosacea, while blue light is helpful in the treatment of acne. Studies show results such as smoother skin; wrinkle reduction and improved skin elasticity; and normalization of skin pigmentation. The effect of red light therapy on wrinkles can be quite dramatic, with one study showing a 30% decrease in eye wrinkle volume. Gut: Gut dysbiosis, involving changes in the gut microbiome, are common around the time of menopause. Estrogen is known to affect the gut microbiome and similarly, some of the microbes in the gut microbiome (called the estrobalome) are able to influence levels of estrogen in the body. Keeping the microbiome healthy during menopause is essential, and light therapy (with red and near infrared light) may provide some support. Animal research has shown that when red or near infrared light was applied to the abdomen of mice, the composition of the microbiome shifted to include more of a bacterial strain that is associated with better health. In humans, red and near infrared light applied to the abdomen of Parkinson’s disease patients modulated the composition of the gut microbiome, with a shift towards more “healthy” bacteria, and in a case report of a patient with breast cancer, application of near infrared light to the abdomen was associated with increased diversity of gut microbes, which is considered to be a healthy change Vaginal Dysbiosis: Similar to the gut, the vagina has a microbiome, and menopause can cause dysbiosis in this region as well. Hormone-induced dysbiosis can increase the vaginal pH and change the composition of the microbes, which is associated with bladder dysfunction and bladder pain syndrome. Light therapy, particularly with red and near infrared light, is proposed as being a positive modulator of the vaginal microbiome. There are several proposed mechanisms, including modulation of nitric oxide. Nitric oxide is important for the lactobacillus species that dominate in the vagina that are known to decrease during menopause. Sleep: As already mentioned, sleep disturbances are experienced by 40-60% of menopausal women. Light is a primary regulator of the body’s circadian rhythm, so it is not surprising that light therapy has effects on sleep. Application of red and near infrared light during wakefulness improves sleep quality in people with cognitive decline, Guillain-Barré Syndrome, fibromyalgia and stroke. When red light therapy is applied during sleep, there is an increased clearance of waste products from the brain and improved flow of cerebrospinal fluid, which are required for optimal brain health. Blue light triggers wakefulness, suppressing melatonin, so direct exposure of the eyes to blue light should be limited to daytime hours. Vaginal Infections: Vaginal infections with yeast and bacteria are more common during menopause due to the changes in estrogen, vaginal pH, and vaginal dryness that occur. In addition to their positive effects on the microbes in the gut and vagina, red and near infrared light have also been shown to have effects on pathogenic (harmful) microorganisms in the female pelvis. Red light has been shown to be helpful in treating vaginal candida, as has blue light. Specifically, blue light at 415nm (the same wavelength as in the Fringe Pelvic Wand) had the most potent anti-candida effects. Blue light has also been shown to be helpful in the treatment of vulvovaginitis. Vaginal Atrophy: Vaginal Atrophy, Dryness & Sexual Dysfunction: The loss of estrogen during menopause causes many changes to the integrity of tissues in the vagina. This results in tissue atrophy and dryness, which can cause great discomfort, especially during sex. The main structural connective tissues are collagen and elastin, which provide strength and flexibility to the vagina. These changes occur for a variety of reasons, including a decrease in blood flow which results from the loss of estrogen. Application of red and near infrared light is known to increase blood flow by increasing levels of nitric oxide. It has also been shown to increase the synthesis of collagen and other supportive connective tissue including elastin. Suggesting that red and near infrared light may help with tissue support and rejuvenation during menopause. Light Therapy Products for Menopause While early research on light therapy used primarily lasers, more recent research has found that LED’s can also be used, which also have the advantage of applying light to a larger area of the body as well as an improved safety profile. The use of LED in red/near infrared/blue light therapy devices has also greatly reduced the cost of treatment, making it something that can be done in the comfort of one’s own home. A wide range of products are available, each of which is uniquely suited to address specific needs. The four most useful light therapy products to address the symptoms of menopause are: Red light therapy panel Panels usually deliver red and near infrared light, ideally with the option to use separately or in combination. Panels can be used to treat most body parts, including the face, chest and back. They’re great for supporting sleep and mood, when light should be entering through the eyes. They can also support digestion when directed towards the skin of the abdomen, as well as the skin on the face. The Fringe Red Light Therapy Panel delivers both wavelengths of light at the same “sweet spot” intensity as the sun. shop our panel Red light therapy wraps Red Light Therapy Wraps deliver light directly to the skin and can be applied to specific body parts, such as the head and abdomen. They should also deliver both red and near infrared light. Wraps have the advantage of being cordless and very convenient to use. The Fringe Red Light Therapy Head Wrap delivers light to the head (including red and two wavelengths of near infrared light) and is ideally suited to support mood, cognition, and hair loss. The Fringe Red Light Therapy Wrap has a rectangular shape and can be applied to the abdomen to support bladder function and digestion. shop our wraps Light therapy face mask Like wraps, face masks deliver light directly to the skin but are specifically contoured to the face. Due to the antimicrobial effects of blue light, it should be included in face masks for the treatment of acne along with red and near infrared light. The Fringe Red Light Therapy Face Mask delivers all three wavelengths of light to support skin health, including acne, wrinkles, pigmentation, and more. shop the mask Light therapy pelvic wand Light therapy pelvic wands are inserted directly into the vagina, delivering light directly to the vaginal tissues that are affected by menopausal hormonal changes. The Fringe Light Therapy Wand delivers red, near infrared, and/or blue light to support blood flow and tissue rejuvenation, which may help alleviate vaginal dryness, atrophy, and sexual dysfunction. shop the wand To recap Menopause is a time of dramatic hormonal changes, which create uncomfortable symptoms for many women. Light therapy is a safe and effective tool that may be used to alleviate a wide range of menopausal symptoms in the comfort of one’s own home. Red and near infrared light provide support for symptoms including sleep and mood issues, cognitive changes, hair loss, gut and vaginal dysbiosis, skin problems, and vaginal tissue changes, while blue light may provide antimicrobial activity for menopausal acne and vaginal infections. Many different light therapy products are available - including panels, wraps, face masks, and pelvic wands – that provide light therapy support for different symptoms. Choose products that use LED lights to deliver red, infrared red, and blue light (where appropriate) at approximately the same intensity of the sun for best results. For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/
Learn moreLight Therapy for Inflammation
Inflammation is one of the most popular topics in healthcare, and rightfully so. It is a hallmark of many diseases currently ravaging modern society, such as arthritis, ulcerative colitis, inflammatory bowel disease, heart disease, diabetes, cancer, Alzheimer’s Disease, and depression. Inflammation is also associated with acute diseases involving the heart, pancreas, liver, and other organs, as well as trauma and infection. The personal and economic burden of these diseases cannot be overstated. Treatment of inflammation associated diseases makes up the majority of health care spending in the US, costing billions of dollars annually. There are also indirect costs of illness, such as reduced work and productivity. The most common treatments for inflammation are pharmaceuticals, including prescription (such as Celebrex) and the over-the-counter drugs (such as Aspirin and Alleve). However, many of these drugs have serious side effects, such as hypersensitivity reactions and ulcers. Given these risks, many people are turning to non-invasive therapies to fight inflammation, some of which are highly effective and have far fewer side effects than their pharmaceutical counterparts. One of these is treatment with red and near infrared light (also called red light therapy or photobiomodulation), which uses light waves at specific frequencies to decrease inflammation at a cellular level. Red Light Therapy The term “red light therapy” usually describes the use of both red and near infrared light, although only the red light produced by the device is visible to the naked eye. Infrared light can still be perceived by the body as heat when it contacts skin. Red and near infrared light therapy is the application of artificially generated light in the red and near infrared spectral bands. Red and near infrared light are naturally produced by the sun, which gives off solar radiation. The term radiation describes energy that is transmitted in the form of waves or particles. The spectrum of light in our environment consists of both light we can see (visible light) and light that our eyes can’t perceive (invisible light). This is called the electromagnetic spectrum. The visible light spectrum is quite narrow, consisting of wavelengths that range from 400 to 700nm and span from violet to red in color. Red light is part of this visible light spectrum, while near infrared light is not. While early research on light therapy used primarily lasers, more recent research has found that LED’s can also be used, which also have the advantage of applying light to a larger area of the body as well as an improved safety profile. The use of LED in red/near infrared light therapy devices has also greatly reduced the cost of treatment, making it something that can be done in the comfort of one’s own home. Inflammation The inflammatory process is mediated by the immune system, specifically the innate (or non-specific) component. Inflammation protects the body from injury and infection. There are many goals of the inflammatory response, including reducing the extent of injury, limiting the spread of infection, and restoring the body back into balance. While we mostly think of inflammation as being harmful, it’s actually a natural and essential physiological function. Inflammation becomes harmful when it is uncontrolled, lasts for a long time, or just generally occurs when it shouldn’t. There are three types of inflammation, which are mainly defined by their length. Acute inflammation is short term, lasting days. This is what happens when you sprain your ankle, and it swells up, becomes warm, and may show color changes. That response is designed to limit movement, which prevents further injury and allows the damaged tissue to heal. Sub-acute inflammation lasts from two to six weeks, and often follows acute inflammation as healing progresses. The response here is similar, but less intense, than acute inflammation. Chronic inflammation lasts for months or even years, and at this point, inflammation has ceased to be a normal (and healthy) response to a stimulus and has become pathological. Chronic inflammation is the type that is associated with most diseases. It is also associated with oxidative stress. Chronic inflammation is not associated with visible signs of inflammation (such as redness, heat, and swelling), so people often aren’t even aware it is happening. This contrasts with acute inflammation, which is usually visible and occurs because of trauma or infection. Red Light Therapy for Inflammation As described by Dr. Michael Hamblin, former Associate Professor at Harvard Medical School, “one of the most reproducible effects of is an overall reduction of inflammation”. Studies have found that light therapy affects levels of many molecules involved in inflammation, including reactive oxygen species, reactive nitrogen species, and prostaglandins. Light therapy has even been found to reduce inflammation in the brain, known as neuroinflammation. Red light therapy has been shown to have anti-inflammatory effects in the following conditions: Brain Disorders – Neuroinflammation is one of the foundational pathologies underlying a wide range of brain disorders. Light therapy has been found to decrease inflammation in Alzheimer’s Disease, as well as to improve cognitive function. Several clinical trials have been published which have shown positive results. Most studies have exclusively used near infrared light, which has been found to penetrate more deeply into the brain. Light therapy has also been found to decrease inflammation and improve recovery after a stroke. When used to treat brain disorders, light therapy is usually applied to the head area, using devices such as hats and helmets. Traumatic Brain Injury - Traumatic brain injuries (TBI) occur when there is a violent blow to the head. Approximately 17% of people with repeated TBI progress to chronic traumatic encephalitis (CTE), a brain disorder caused by repeated head injuries. Concussions are another common type of TBI. TBI’s result in acute neuroinflammation, which can become a chronic problem if not treated properly. Research using light therapy (both red and near infrared) for TBI has looked at both immediate and chronic effects in animal and human models. Animal studies have shown a reduction in the size of the brain lesion when light therapy was applied to the head immediately following trauma, which correlated with the severity of neurological symptoms, which may be due (in part) to decreased inflammation. Depression – Neuroinflammation is similarly found in people suffering from depression, and it is thought to be a key factor and therapeutic target in depressive disorders. Several clinical trials of light therapy in depression have been conducted, all of which used near infrared light applied directly to the head. A 2022 systematic review concluded that light therapy “can be classified as strongly recommended for moderate grade of major depressive disorder”. Similarly, a 2023 meta-analysis concluded that there is a “promising role of in the treatment of depressive symptoms”. Gut Disorders – Inflammatory gut diseases like colitis and inflammatory bowel diseases may benefit from red light therapy. Research has found that application of red light to the abdomen of rats with experimentally induced colitis (a form of inflammatory bowel disease) improved many markers of gut health, including reducing inflammation. There is interest in studying the use of light therapy to improve gut health in human subjects as well, with research currently ongoing to see if it helps patients with inflammatory bowel disease. When treating gut disorders, light therapy is usually applied directly to the abdomen. Pain - Pain creates a huge burden of disability, both personal and economic. There is evidence that red light therapy decreases many types of pain, including knee, neck, low-back, temporomandibular joint, and post-surgical pain. Red light therapy can also reduce pain associated with arthritis and fibromyalgia. One of the primary mechanisms of pain reduction by light therapy is by decreasing inflammation. Red light therapy also reduces pain by decreasing oxidative stress, reducing the sensitivity of neurons, and decreasing the transmission of pain related nerve impulses. Arthritis – In addition to reducing arthritis pain by decreasing inflammation, the anti-inflammatory effects of red light therapy on arthritis also yields other benefits. Inflammation in arthritis is responsible for much of the observed pathology, including cartilage breakdown. Treatment with red light therapy may have a range of positive effects, such as preserving joint function, avoiding joint deformities, and reducing drug side effects and toxicities. Delayed Onset Muscle Soreness – Delayed onset muscle soreness (DOMS) is pain that occurs in the muscles between 12 and 24 hours after a workout. DOMS is caused by tiny muscle tears that results in inflammation, which causes pain. Treatment with red light therapy to muscles after a strength training session has been shown to decrease markers of inflammation, as well as to improve other outcomes like decreased fatigue and increased protein synthesis. Injury – In addition to its anti-inflammatory effects on muscle tissue, including speeding recovery from post-exercise damage, red light therapy also reduces inflammation and speeds wound healing, such as from burn injuries. Red light therapy can also reduce inflammation and speed healing from injuries to bone, including fractures and more complex bone injuries that require the use ceramic materials. Tendon injuries also benefit from red light therapy. Skin Disorders – Many skin disorders are characterized by inflammation, including acne, psoriasis and eczema. Light therapies treat acne through anti-inflammatory and antimicrobial effects, and by decreasing the production of oil. Inflammatory acne is more responsive to light therapy than non-inflammatory acne, and studies have even found it to be superior to some medications. Red and near infrared light is also recommended in the treatment of psoriasis in part because of its anti-inflammatory effects. And in eczema, an inflammatory skin disease, treatment with near infrared light therapy has been found to decrease skin itching and lesions. Alopecia Areata – Alopecia Areata (AA) is an autoimmune disease that causes the body to attack its own hair follicles. This causes the hair to fall out, resulting in patches of baldness. AA can affect hair on any part of the body but is most common on the head. It is characterized by inflammation around hair follicles during the growth phase. The anti-inflammatory effects of light therapy may decrease this inflammation. In fact, treatment with red and near infrared light has been found to increase hair growth in bald patches. How To Use Red Light Therapy To Reduce Inflammation There is no single right way to use red light therapy to reduce inflammation. It all depends on what condition you are trying to treat and what your personal preferences are as far as treatment approach. The following are a few simple questions that can be used to guide you towards selecting the device that is most suitable for your needs: 1. What are your specific health concerns? Red light is usually applied to the affected body part, either directly in contact with the skin or at a distance of around 4 to 12 inches away. Some devices are location specific, such as knee wraps, head wraps or helmets, shoulder and neck wraps, or elbow and wrist red light wraps. Other devices are non-specific, such as square or rectangular light wraps, or red light panels. If you are dealing with a single, region-specific concern – such as knee arthritis or Alzheimer’s Disease - you may prefer to get a regionally targeted red light therapy device. However, if you are dealing with inflammation in more than one area of the body and want a device that can be used in multiple locations, a non-specific wrap may be preferable. Red light panels can also be used to address multiple body parts, although they may be difficult to position properly for some locations, such as the feet and ankles. 2. What are your preferred treatment conditions? Treatments using red light panels are most often done in a seated position, with the panel oriented towards the face, neck, torso, or other affected body part. They can also be done in a standing position, although this is not as relaxing. Lying down is possible if the treatment location allows it. Red light panels are wired and require the user to stay in the same position throughout the duration of the treatment. In contrast, treatments using red light wraps can be done in any position, including standing, sitting, and lying down. They can even be worn while moving around. Some red light wraps are wired, while others are wireless, with wireless models providing more flexibility. 3. What device specs should you look for? At home red light therapy devices almost always use LED’s as the light source. However, they do vary in other parameters, such as light wavelength(s) and intensity. When it comes to choosing the optimal wavelengths, you should look for light in the red and/or near infrared spectrums - but avoid the range of 700-780nm which has been found to be ineffective. Multi-wavelength devices including both red and near infrared light may be the most versatile. In terms of intensity, it has been found that it is ideal to mimic the intensity of the sun, which is around 24 mW/cm2 at the skin. This is described as the “sweet spot” between higher intensities, which can have harmful effects, and lower intensities, which will have no effect at all. Many devices on the market are at a much higher intensity than the sun, so choose a sun-mimicking product and don’t overdo it when it comes to treatment frequency and duration. Conclusion Red light therapy (with red and near infrared light) may be used to reduce inflammation in a wide range of diseases, both acute and chronic. There are very few contraindications to red light therapy, and it can be safely used at home as part of a regular wellness regime. Choose a device that suits your needs and preferred treatment conditions, and which delivers both red and near infrared light at an appropriate intensity. Combine red light therapy with an anti-inflammatory diet and supplements, regular exercise, stress management, and good sleep hygiene for best results. For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/
Learn moreRed Light Therapy for Depression
Depression is a highly prevalent mood disorder, affecting at least 21 million people in the US in 2021. Depression disproportionately affects young people, with considerably higher rates in people aged 18-25. In the United States, $71 billion is spent treating depression each year by individual patients, government, and insurance programs, and depressive disorders are the sixth most costly health condition overall. Depression tends to be chronic with high rates of recurrence and remission. Depression is widely treated with antidepressants, such as selective serotonin reuptake inhibitors (SSRI’s), but some patients are unresponsive, and many do not achieve full remission. They are also associated with many side effects. In a large analysis of 131 randomised, placebo-controlled trials, it was found that while SSRI’s may reduce depressive symptoms, they increase the risk of serious and non-serious adverse events to the extent that the researchers concluded “the potential small beneficial effects seem to be outweighed by harmful effects”. While depression is associated with psychosocial factors such as trauma, there is also often an underlying brain pathology. In particular, depression has been associated with impaired functioning of brain mitochondria, brain inflammation, and oxidative stress, all of which may be improved by treatment with red and near infrared light. Several clinical trials of light therapy in depression have been conducted, all of which used near infrared light applied directly to the head. A 2022 systematic review concluded that near infrared light therapy “can be classified as strongly recommended for moderate grade of major depressive disorder”. Similarly, a 2023 meta-analysis of human studies concluded that there is a “promising role of in the treatment of depressive symptoms”. When using red light to treat depression, light can be applied to the head using a head wrap or helmet. Most commonly, near infrared light is used because it penetrates more deeply into the brain, but red light may also be helpful. The Fringe red light head wrap contains 450 LED chips that deliver two wavelengths of deep penetrating near infrared light along with red light to the forehead, sides, top and back of the head. Wireless, portable, and flexible, it is an ideal way to support brain health in the comfort of your own home. For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/
Learn moreRed Light Therapy for Seasonal Affective Disorder
What is Seasonal Affective Disorder (SAD)? Seasonal Affective Disorder (SAD) is also known as the “winter blues” or “seasonal depression”. In the simplest terms, it is depression that follows a season pattern, usually occurring in the winter. SAD is considered a variant of Major Depressive Disorder or Bipolar Disorder, rather than a distinct condition. It is recognized in the Diagnostic Manual of Mental Disorders (DSM-5) and affects around 5% of US adults. January and February are the hardest months for people with SAD. The symptoms of SAD are similar to the symptoms of non-SAD depression, and include: feeling sad fatigue and loss of energy loss in interest or pleasure in activities changes in appetite and sleep (especially overeating and oversleeping) feeling worthless or guilty difficulty thinking, concentrating, or making decisions physical aches and pains thoughts of death or suicide. SAD occurs at a specific time of year and the diagnosis requires that it recurs at least two consecutive years in the same season. Symptoms last for around 4 to 5 months, and there is full remission of symptoms when the season ends. SAD usually occurs in the Fall or Winter. Risk factors for SAD include being female, living at a northern latitude, a family history of SAD, and being between 18 and 30 years of age. Both pharmacological and non-pharmacological treatments have been identified as first line therapies for SAD. Pharmacological treatments include antidepressant medications, such as selective serotonin reuptake inhibitors. Non-pharmacological treatments include cognitive behavioral therapy and light therapy. The goal of light therapy is to compensate for the loss of natural sunlight during the shorter and darker winter months, and most often involves exposure to bright white light. What is the relationship between light and SAD? The seasonal nature of SAD and its high prevalence during the winter months, along with resolution during warmer, sunnier seasons, suggests a causal relationship with sun and light exposure. Human biology is clearly linked with the rhythm of the sun, with people naturally following a sleep/wake cycle that is associated with night and day. This sleep/wake cycle is also known as our circadian rhythm. Circadian rhythms are the “physical, mental, and behavioral changes an organism experiences over a 24-hr cycle.” In addition to light and dark, circadian rhythms are also influenced by temperature, diet, exercise, stress, and social environment. Light, however, is the primary regulator, and it exerts this influence through effects on the brain. The influence of light on the brain starts with the eyes. Light enters the retina and activates cells called intrinsically photosensitive retinal ganglion cells. Retinal ganglion cells are active even in people who are completely blind, who show similar sleep and wake cycles to sighted people because of the response of these cells to light. Retinal ganglion cells show their greatest response to the blue light spectrum. Sunlight contains blue light, in addition to many other wavelengths of color. From the eyes, a signal is sent to the suprachiasmatic nucleus in the brain. Known as the “master circadian clock”, the suprachiasmatic nucleus is the most important circadian regulator. The clock in turn sends out many signals that regulate a wide range of processes in the body, including controlling the expression of up to 10% of our genes. Light is the primary regulator of this internal clock, although there are other non-light influences on this rhythm too. Melatonin and cortisol are the main hormonal mediators of the circadian rhythm, and the synthesis of both is regulated by light. Melatonin is secreted in response to the absence of light, triggering sleep. Cortisol is secreted in response to the presence of light, triggering wakefulness. The synthesis of both melatonin and cortisol is controlled by signals that come from the suprachiasmatic nucleus. In the winter months, decreased exposure to light causes the circadian rhythm to shift later in the day, which results in a misalignment between the sleep-wake cycle and the circadian rhythms’ natural processes. Exposure to certain types of light on winter mornings pulls the circadian rhythm back into alignment. Different types of light are known to have variable effects on the circadian rhythm. Both bright white and blue light suppress the release of melatonin, which promotes wakefulness. Blue light exposure can cause the circadian rhythm to shift even when applied later in the day, unlike bright white light which is more effective at causing a shift in the morning. Red light does not suppress melatonin levels or cause the circadian rhythm to shift. These variable effects of different wavelengths (colors) of light have important implications for light therapy, which is the application of external light sources to affect biology. Exposure to light has been clearly shown to be associated with mood. A study of over 400,000 people showed that increasing exposure to daylight associated with reduced risk of major depression and greater happiness. This may be mediated by serotonin, which is known as a “natural mood booster”. Serotonin is a critical link and regulator of both the circadian rhythm and mood, and levels increase with sun exposure. In contrast to the positive mood effects of sunlight exposure, exposure to artificial light later in the day can have adverse effects. In simple terms, the naturally stimulating effect of white and blue light on wakefulness is helpful in the early part of the day but is harmful in the evening and at night. The associations between light and levels of melatonin, cortisol, and serotonin provide clues as to how the dark, short days of winter can negatively impact mood. And while more research is needed to clearly understand the pathology of SAD, its positive response to light therapy suggest that light is one of the most important mediators. How is red light therapy for Seasonal Affective Disorder used? Light therapy is widely accepted as a first line non-pharmacological treatment for SAD. Usually, this involves treatment with bright light (called Bright Light Therapy, BLT), but dawn simulation is also used. Dawn simulation delivers light that gradually increases during the last half hour of sleep, while BLT delivers very bright light (most often white, but sometimes blue) shortly after waking. Bright light therapy has been shown to be more effective for people with more severe depression, but both are beneficial. As already described, retinal ganglion cells in the eye respond to light, particularly in the blue spectrum. White light contains all visible light frequencies, including blue, and both white and blue light promote wakefulness, in part through suppression of melatonin. This is why white and blue light are the main sources of light used in SAD light therapy. Light intensity is measured in Lux, and bright light is typically considered to be at least 10,000 Lux. Light intensity varies greatly, sometimes in surprising ways. Here are some light intensities under different conditions: Bright sunlight = 120,000 Lux Bright sunlight = 110,000 Lux Shaded area on a sunny day = 20,000 Lux Overcast day, midday = 1,000 – 2,000 Lux Sunrise/Sunset (clear day) = 400 Lux Sunrise/Sunset (overcast) = 40 Lux Moonlight (clear night) = 1 Lux Office lighting = 200 – 400 Lux Home lighting = 50 – 200 Lux In BLT, an external light source (usually called a “light box”) is used that delivers light at around 10,000 Lux. It is recommended to use BLT in the early morning shortly after waking for approximately 30 minutes. The person should position themself 60-80cm from the light box, with the light at eye level. Lower intensity light can be used (2,500 - 5,000 Lux) but with lower intensity light the treatment duration is extended to 1 to 2 hours. Treatment should be done until the season ends. Light used in BLT will be delivered by either fluorescent or LED lights. Fluorescent lights deliver white light, either warm or cool, while LED lights can deliver both white and blue light. White light is referred to as “colorless daylight” and is made up of all the frequencies in the visible light spectrum (including red, yellow, green, blue, etc.). White fluorescent bulbs and LED lights will also contain all of the visible light frequencies but they can vary in their spectral characteristics, such as the particular wavelength distribution and intensity. When the spectrum of light from bright light devices is analyzed, it varies depending on the light source. Fluorescent lights, both warm and cool, emit light that shows several peaks that correspond to different colors, including red. White LED diodes usually have a sharp blue peak, but they also contain wavelengths of different colors. The main difference between white and blue BLT devices is that white light contains multiple colors (called polychromatic), even though it appears white or colorless, while blue light is a singular color (called monochromatic). It is sometimes claimed that SAD light boxes provide a “hefty dose” of blue light. This is not entirely true. The spectral analysis of devices that use both warm and cool fluorescent lights reveals a mixture of wavelengths (yes, including blue), but their calculated “blue light hazard” level is actually quite low. Warm fluorescent light is a bit better than cool fluorescent light, which showed around the same blue light hazard as white LED light. It’s also important to note that blue light is “disruptive” to the circadian rhythm precisely because our bodies are naturally designed to respond to the blue wavelengths of light from the sun. When used in the morning, exposure to blue light (even artificial) provides a cue for the system to wake up. It should go without saying that bright light therapy devices should not be used in the evening. BLT has been found to effectively reduce the symptoms of SAD, although white light shows more effectiveness than blue light. A meta-analysis published in 2015 found that bright white light therapy was effective, although the effects were weaker at some time points. A meta-analysis of bright blue light therapy for SAD did not find it to be beneficial. How Does Seasonal Affective Disorder Relate to Different Wavelengths of Light? SAD is related to the lack of daylight, or sunlight, during winter months. Sunlight consists of solar radiation, which is energy that is transmitted in the form of waves or particles. The spectrum of light in our environment consists of both light we can see (visible light) and light that our eyes can’t perceive (invisible light). This is called the electromagnetic spectrum. The visible light spectrum is quite narrow, consisting of wavelengths that range from 400 to 700nm and span from violet to red in color. Although the amount of solar radiation is not constant, approximately 40% percent of the light from the sun is visible light, which can be divided by color and wavelength. Near infrared light waves lie just beyond the “red” end of the visible light spectrum, so we don’t see them. Near infrared light is part of the “infrared” spectrum, which consists of both near infrared and far infrared light. Infrared light makes up 50% of the solar radiation that reaches the earth. The remaining 10% of the light from the sun is also invisible, falling just beyond the opposite “violet” end of the visible spectrum to IR. This is called ultraviolet light (UVL). What this means is that BLT only partly mimics the natural effects of sunlight, since it delivers only visible light. Bright white light does not include light in the UV spectrum of the sun. This is done intentionally, since UV rays are the component of solar radiation that are the main culprits in causing skin cancer. Bright white light also does not include light in the infrared spectrum of the sun. This omission is less justified, since infrared light does not have harmful effects on the skin (quite the opposite, in fact), and infrared light makes up a significant amount of natural sunlight. BLT that uses blue light excludes not only UV and infrared light but also the non-blue wavelengths of light, including red, orange, yellow, green and violet. Does Red Light Therapy Improve Seasonal Affective Disorder? Red and near infrared light therapy is the application of artificially generated light in the red and near infrared spectral bands. The term “red light therapy” usually describes the use of both red and near infrared light, although only the red light produced by the device is visible to the naked eye. Infrared light can still be perceived by the body as heat when it contacts skin. Like BLT, red and near infrared light therapy does not involve the use of UV rays. The red light used in light therapy usually ranges from 600 to 700 nanometres (nm), with the unit nm referring to distance the light wave travels in one cycle. The near infrared light used in light therapy usually ranges from 800 to 1100nm. Interestingly, there are no clinical trials of red light therapy to treat SAD, but there are many that have been done looking at the effects of red light on non-SAD depression. All of the non-SAD clinical trials of red light therapy used near infrared light applied directly to the head. A 2022 systematic review concluded that near infrared light therapy “can be classified as strongly recommended for moderate grade of major depressive disorder”. Similarly, a 2023 meta-analysis concluded that there is a “promising role of in the treatment of depressive symptoms”. These results demonstrate that red light therapy has positive effects on mood. Another challenging symptom of SAD is sleep disturbance, which is another issue that red light therapy has been found to help. Application of red light therapy during wakefulness improves sleep quality in people with cognitive decline, Guillain-Barré Syndrome, fibromyalgia and stroke. Interestingly, sleep duration decreased with full body red light therapy in elite athletes, while other parameters such as exercise recovery improved. When red light therapy is applied during sleep, there is an increased clearance of waste products from the brain and improved flow of cerebrospinal fluid, which are required for optimal brain health. So, red light therapy is beneficial when applied when either awake or sleeping, and the benefits relate more to improving sleep quality and physiology, rather than to increasing sleep duration. As already described, increased exposure to outdoor light is associated with reduced risk of major depression and greater happiness. Since outdoor light is a combination of visible light (including blue and red), infrared, and UV light, this contrasts with the light used in BLT, which includes only white visible light or blue monochromatic light. With so many studies showing a benefit to using red light therapy (especially infrared light), it is possible that the addition of red light in the treatment of SAD could be beneficial. Combining Bright and Red Light Therapy to Improve Seasonal Affective Disorder Red light therapy can easily be combined with BLT in the treatment of Seasonal Affective Disorder. Since the rising sun appears red when first coming up over the horizon, exposure to red light followed by exposure to BLT is recommended. This is a practice that I’ve been doing for several years, following decades of winter seasons in which I suffered from some degree of seasonal depression. Initially, my doctor recommended that I purchase a fluorescent light box, which I used successfully for a few years. After gaining knowledge of red light therapy, I combined the two and now use them in tandem. My recommended practice is as follows: Shortly after waking, use a red light therapy panel (that delivers both red and near infrared light) for 10 minutes, sitting comfortably 6 to 12 inches away. If you prefer, or if it’s uncomfortable to keep your eyes open in front of the red light panel, you can close them – light still penetrates through to the retinal ganglion cells. However, it is safe to open your eyes as long as your red light panel is low to moderate intensity. The 10 minutes spent in front of the red light panel provides a great opportunity to work on breathwork or mindfulness, which have positive effects on mood. After 10 minutes of red light therapy, use a light box that delivers white light (preferably using warm fluorescent bulbs, which have a lower blue light hazard ratio) for 20 minutes. It is possible to do normal activities while in front of the light box, so people usually set them up in an office (so that they can work on a computer or read) or on a kitchen island. I recommend setting it up in an office space and spending that 20 minutes engaged in an activity that generates a positive mood. For most people, this means avoiding reading the news, but you can do things like sending emails to friends or reading something uplifting. Taking time to be calm and to orient your attention in a positive direction uplifts mood. Avoid bright light, especially blue light, at night. Exposure to blue light (especially bright blue light) is disruptive to sleep, which is why it is not recommended to use electronic devices (like iPads or e-readers) that emit blue light at night. Keep household lighting dim in the evening and at night. Red light therapy may also be used at night, although you should position yourself farther from the panel so that the light is less intense. Red light panels can even be used as a source of evening/nighttime illumination. Red LED light bulbs may also be used as a source of illumination at night. Conclusion We often hear the recommendation by health experts these days to “view morning sun” as a way to optimize health, including mental health. While it is no doubt ideal to have exposure to natural light in the morning, for people that live in cold winter climates this can be very difficult. Under these circumstances, light devices – both bright and red light - can be used to mimic sunrise and sun exposure. Although the combination of bright and red/near infrared light has yet to be subject to intensive research, there is strong evidence that both exert a positive influence on mood. Since daylight consists of a combination of light wavelengths, including near infrared light, there is good reason to believe that these two may work in tandem as a powerful tool in the prevention and treatment of Seasonal Affective Disorder. For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/
Learn more