Blog
Deconstructing Red Light Therapy Intensity: Why MORE Isn’t Always BETTER!
Red Light Therapy Intensity: Why Higher Power Isn’t Always Better for Results “High intensity, medical grade Red Light Therapy”. This is a statement that is often made about Red Light Therapy devices, implying that to see real therapeutic benefits, that a device must be really powerful. But is this actually true? What does the scientific evidence say about high intensity Red Light Therapy devices? Let’s dig into the research. But first, we need to define what light “intensity” is. Light intensity (also known as power density) describes the amount of light being delivered by a device. Also sometimes called irradiance, it’s usually measured in units called mW/cm2. Intensity is related to power, which is the rate at which energy is delivered, measured in Watts (W). If we look at that energy per square cm of exposure site, we get W/cm2, or mW/cm2 – our intensity. So, intensity is the amount of energy from a device at any given moment, and if we consider that as a function of time of exposure, we get the energy density (measured in J/cm2), which is the total energy delivered over time. This combination of intensity with exposure time is also referred to as the “dose” of light delivered by the treatment. Let’s dig into the assumption that higher powered devices are required to derive benefit by exploring five lines of evidence. 1. Where did the idea that high intensity Red Light Therapy is required for therapeutic benefit come from? This idea comes from the fact that for decades, virtually all research and applications of photobiomodulation were done with lasers, which are high intensity devices. Research into Red Light Therapy began in the 1960’s, and lasers dominated the field until around the early 2000’s, when LED’s (light emitting diodes) began to be studied. The scientific literature is comprised of around 85% studies using lasers as light sources, with the rest using LED’s. Companies making higher powered devices are often trying to get close to the power of lasers, citing laser research that shows benefits. However, hundreds of studies have now shown that LED Red Light Therapy yields many benefits, such as reducing pain and inflammation. And, LED’s have four important advantages over lasers: (1) they’re safer, (2) they’re cheaper, (3) they can be easily used at home, and (4) LED’s can cover a greater area of the body allowing more tissue to receive light. Given this, an important question for researchers in the field to address was whether the benefits of Red Light Therapy were specific to something about laser light, or whether those benefits could be replicated using LED’s. In 2018, an analysis that reviewed the comparative evidence of lasers versus LED’s concluded that “most of these comparisons provisionally suggest that lasers could indeed be replaced with LED’s without significant worsening of the results.” This is despite major differences in power outputs, which demonstrates that high intensity lasers are not required for therapeutic benefits. 2. Does the research on Red Light Therapy demonstrate that a certain intensity range is needed to observe therapeutic benefits? There is an excellent comprehensive database online of published photobiomodulation research studies that describes the details of thousands of Red Light Therapy studies. We can look at this database to compare the intensity (power) of studies relative to their results, and to see if there are clear trends, such as a requirement for high intensity/power to yield benefits. Most studies using LED’s have an intensity between 10 and 100mW/cm2 and are most commonly between 10 and 50mW/cm2. For lasers, the intensity is much higher, based on the different characteristics of the light produced. Positive results spanning a wide range of outcomes are observed, and there are no clear trends related to light intensity. Some studies use extremely low intensity LED lights, some use higher intensity LED lights, and some use high intensity lasers. Although studies of certain light intensities are sometimes used to support specific products, when you look at the totality of the research, the main conclusion that can be drawn is that exposure to red and/or near infrared light across a wide range of light characteristics, including intensity, yields biological benefits. 3. Can devices with different intensities be used to deliver the same “dose” of light? Theoretically, the time variable can be manipulated when using devices with different intensities to deliver the same “dose” of light. Mathematical calculations show that higher intensity devices used for shorter periods of time can deliver a comparable dose of light to lower intensity devices used for longer periods of time. However, some research has demonstrated that our bodies don’t seem to absorb photons the same way when they are delivered at a high intensity, suggesting that “dose” may not simply be a mathematical calculation of intensity and time. For example, a recent comprehensive review of studies of red light therapy for the brain found that “NIR light with low-power density (15–30 mW/cm2) is a more effective intervention than that with high-power density (40–90 mW/cm2)." 4. If low, moderate, and high intensity devices have been shown to deliver therapeutic benefits, are there reasons for preferring low or moderate intensity rather than high? Yes, there are reasons to prefer low to moderate intensity devices as compared to high. For example, high intensity light can increase oxidative stress, which is harmful to biological health. When wounds are treated with low/moderate intensity red light therapy, markers of oxidative stress initially increase and then decrease dramatically as healing progresses. However, when wounds are treated with high intensity red light therapy, oxidative stress remains high. Similarly, levels of antioxidant enzyme activity (which reduces oxidative stress) increase with low/moderate intensity red light therapy but not with high intensity light. This suggests that low/moderate intensity Red Light Therapy reduces oxidative stress, while high intensity Red Light Therapy may cause it to increase. High intensity light also carries a risk of heating tissues and causing thermal damage. 5. Are there biological reasons to expect that there could be an upper limit to Red Light Therapy intensity when it comes to therapeutic benefits? Yes! Researchers have carefully studied the biological effects of Red Light Therapy and have clearly concluded that “dose” matters. If the dose is too low, there is no benefit; similarly, if it is too high, there is also no benefit – and there is the potential for harm. This is called a biphasic dose response, also known as the Arndt Shulz law. Picture this as an inverted U curve. If the dose is too low or too high, there will be minimal response, but there is a relatively wide range of doses in the middle range that are beneficial. As described by Dr. Michael Hamblin, “It has been consistently found that when the dose of is increased a maximum response is reached at some value, and if the dose in increased beyond that maximal value, the response diminishes, disappears and it is even possible that negative or inhibitory effects are produced at very high fluences.” Because “dose” is a function of intensity and time, using high intensity devices for too long can easily yield a dose of light that will not be beneficial, and may even be harmful. These five lines of evidence clearly illustrate that the assumption that high intensity devices are needed to achieve benefit is not accurate. It is the dose that creates the benefit – and dose is a function of intensity and time. While it may be appealing to use a higher intensity light to get the treatment done faster, this carries risks including thermal damage due to heating tissues, as well as a risk of causing oxidative stress. The tendency when using a high intensity device – which would require a treatment time of only a few minutes (or even less) – is to overdo it. For at-home devices, low to moderate intensities leave more wiggle room in terms of both safety and benefits. Fringe Red Light Therapy Intensity Fringe Red Light Therapy products were designed to deliver light at an intensity of 20-40mW/cm2, which is the approximate intensity of the sun. This has been described as the “sweet spot” between higher intensities, which can have harmful effects, and lower intensities, which will have no effect at all. Although there are no clear distinctions between low, moderate, and high intensity devices, the intensity of Fringe Red Light Therapy devices would most appropriately be termed as low/moderate and stands in contrast to many devices on the market, which are 100mW/cm2 or even higher. At this intensity, our products can safely be used for treatment periods between 10 and 30 minutes, and our products are programmed with built-in timers to deliver a safe and effective dose of light. We verify the intensity of our products using third party testing, which is important because independent research has found that many commercial home-based Red Light Therapy products do not deliver light as advertised. Take Home Points The idea that high intensity Red Light Therapy devices are needed for therapeutic benefits originated from decades of research using high intensity lasers; however, subsequent research has demonstrated that lower intensity LED powered devices can yield comparable results. An analysis of the totality of published Red Light Therapy research (using both lasers and LED’s) shows that benefits can be seen when using devices that span a very wide range of intensity, from low to high. This is consistent with research that shows the effective “dose” of Red Light Therapy follows a U-shaped curve, with benefits spanning a wide range but which has a lower and upper limit. The “dose” of light is determined by its intensity and the treatment time, although research has shown that delivering light quickly using a high intensity device may not be as effective as delivering it more slowly using a lower intensity device, suggesting that the “dose” is not the only factor that determines benefits. High intensity light can increase oxidative stress and the risk of thermal damage, so care must be taken when using high powered devices to limit treatment times, which can be difficult to do when using at-home devices. The Verdict? Research evidence does not support the claim that high intensity Red Light Therapy devices are required for therapeutic benefits. Using low to moderate intensity devices yields results that are comparable to using high intensity devices, with some research even demonstrating greater efficacy. Low to moderate intensity devices also have the advantage of greater safety and can be safely used at home as part of a regular wellness regime. Choose a device that suits your needs and preferred treatment conditions, and which delivers both red and near infrared light at an appropriate intensity. Combine red light therapy with an anti-inflammatory diet and supplements, regular exercise, stress management, and good sleep hygiene for best results.
Learn moreRed Light Therapy & Traumatic Brain Injury
What is Traumatic Brain Injury? Traumatic Brain Injury (TBI) occurs when the brain is damaged by an external force, like an impact, blast, or rapid acceleration/deceleration. Common causes of TBI include falls, sports injuries, vehicle accidents, and physical assaults. Damage from TBI’s can lead to long-lasting and even permanent impairment of brain function. TBI’s are common injuries in the US, with approximately 1.5 million Americans experiencing a TBI annually. TBI is considered an umbrella term that refers to any brain injury caused by an external source. TBI’s can be categorized by severity, ranging from mild to severe, and have unique characteristics: Mild TBI – Causes temporary confusion and headache. Moderate TBI – Causes prolonged confusion and cognitive impairment. Severe TBI – Causes significant cognitive deficits and long-term complications. TBI’s can also be categorized by timeframe, including both acute (short-term) and chronic (long-term) effects. The acute phase last from hours to weeks, while the chronic phase lasts from weeks to years, depending on the severity of the TBI. Two TBI-related terms that may be familiar to people are concussions and Chronic Traumatic Encephalopathy (CTE). Concussions are a type of mild TBI, and although symptoms usually resolve within days to weeks, they can still have long-term effects, especially with multiple incidents. One potential long-term consequence of repeated concussions is CTE, a progressive neurodegenerative disease believed to be caused by repeated head injuries, including multiple mild TBIs. Treatment for TBI varies greatly depending on the severity of the injury. In general, it involves stabilization, symptom management, and rehabilitation. The primary goal of treatment during the acute phase is to protect brain tissue and focuses on cognitive rest and addressing symptoms. In the chronic phase, the primary goal of treatment is to restore cognitive, motor, and emotional function. Emerging treatments such as Red Light Therapy may be beneficial in supporting the brain during both the acute and Shop Red Light Therapy Head Wrap How does TBI affect the Brain Before we consider how Red Light Therapy may be used to support brain health following TBI, let’s take a closer look at the three major pathological processes that occur in the brain during this type of injury. Neuroinflammation: TBI causes neuroinflammation, which occurs in the hours to days following the injury. Neuroinflammation is inflammation of the brain, which can be helpful in the short term but is harmful when prolonged, leading to chronic neurodegeneration. Excess neuroinflammation is linked to brain fog, mood disorders, and an increased risk of neurodegenerative diseases such as CTE. Oxidative stress: Following a TBI, the brain produces excessive amount of reactive oxygen species (ROS), which can lead to oxidative stress. Oxidative stress can overwhelm our antioxidant defenses and cause damage to cells in the brain, worsening brain injury. Impaired brain energy metabolism: TBI impairs brain energy metabolism, particularly the ability of the brain to use glucose, which leads to a metabolic crisis where neurons are deprived of energy. After an initial phase of excessive glucose use, there is a decrease in glucose availability that can last from days to weeks, which makes neurons more vulnerable to damage and impairs healing. These three factors interact and include many overlapping molecules. For example, both neuroinflammation and impaired brain energy metabolism can lead to an increase in ROS production, further worsening oxidative stress. Similarly, impaired energy metabolism exacerbates neuroinflammation. This creates a self-perpetuating cycle of damage, which is why TBI recovery can be slow and why some people experience persistent symptoms for weeks, months, or even years following the injury. How does Red Light Therapy support brain function? Red Light Therapy is a promising tool for supporting the brain during TBI because it targets all three foundational brain pathologies, including neuroinflammation, oxidative stress, and impaired brain energy metabolism. Using both red and near infrared light (especially near infrared, which has deeper penetration), Red Light Therapy delivers wavelengths that interact with light sensitive molecules inside brain cells. Here's how Red Light Therapy affects neuroinflammation, oxidative stress, and brain energy metabolism: Neuroinflammation: Red and near infrared light wavelengths have anti-inflammatory effects, and unlike anti-inflammatory medications (such as NSAID’s), do not cause side effects. Studies have found that light therapy affects levels of many molecules involved in inflammation, including ROS, reactive nitrogen species, and prostaglandins. Red and near infrared light therapy have specifically shown to reduce neuroinflammation. Oxidative stress: Light is absorbed in cells by molecules called chromophores, many of which are found inside the mitochondria. Mitochondria are involved in regulating the production the ROS that cause oxidative stress when present in high amounts. Light therapy has been shown to modulate oxidative stress and ROS production. Impaired brain energy metabolism: Through its impact on mitochondria, light also affects metabolism. In addition to regulating ROS production, mitochondria also make ATP, which is the energy currency of the cell, via a chain of molecules that includes cytochrome c oxidase. Cytochrome c oxidase is activated by both red and near infrared light, which increases ATP synthesis and provides more energy to brain cells. As well, there are additional effects of Red Light Therapy in the brain that may help to support healing from TBI. This includes increasing brain blood flow, supporting brain adaptability, and regulating neuron cell death. Collectively, there are many ways in which Red Light Therapy may be used therapeutically in TBI, and these have been explored in several clinical and pre-clinical studies of both acute and chronic TBI. Is there evidence to support the use of Red Light Therapy in TBI? Yes! Red Light Therapy has been investigated in several studies of TBI using a range of different experimental approaches. These studies can be broken down by timeframe into both acute and chronic TBI, as well as by study type, including clinical (using humans as subjects) and pre-clinical (using animals as subjects). Acute TBI The acute phase of TBI immediately follows the onset of injury. Unfortunately, this creates some challenge in coordinating and executing research studies, since it is difficult to recruit human subjects into a research study who have just experienced a head injury. As a result, most of the research in this TBI phase has been done using animals given a head injury in a controlled environment. In a 2023 systematic review of 17 animal studies that used Red Light Therapy immediately post-TBI, it was found that early light therapy intervention could improve neurological outcomes and reduce the size of trauma-associated brain lesions. Optimal results were associated with both red and near infrared light, initiation within 4 hours post-injury, and up to three daily treatments. One human study was included in the review of Red Light Therapy for acute TBI, which suggested safety and feasibility, but treatment efficacy could not be determined. Chronic TBI Many more human studies have explored the use of Red Light Therapy in the chronic phase of TBI, which occurs weeks to months after the initial trauma. In a 2024 review of 16 human studies, overall improvements in neuropsychological outcomes and increased cerebral blood flow following transcranial PBM were observed. Here are some highlights of the clinical research findings: How can I use Red Light Therapy in TBI? 2019 study of 12 military veterans with chronic TBI lasting more than 18 months – Following six weeks of application of both red and near infrared light to the head using LED lights, neuropsychological scores and brain blood flow were improved. 2020 case report of 23-year professional hockey player with a history of concussions, and symptoms of headaches, mild anxiety, and difficulty concentrating - Following 8 weeks of application of near infrared light to the head using LED lights, many positive findings were observed, including increased brain volume, improved brain connectivity, increased brain blood flow, and improved neuropsychological test scores. 2023 study of four retired professional football players with suspected CTE – Following application of near infrared light to the head using LED lights three times per week for six weeks, a wide range of improvements were noted, including improved sleep, reduced depression, decreased PTSD, and decreased pain. Analysis of brain function showed several improvements. Collectively, research looking at the use of Red Light Therapy to support healing from TBI has yielded positive outcomes, both subjective (such as improved mood and decreased pain), and objective (such as increased brain volume and blood flow). There is stronger support for the use of Red Light Therapy in chronic TBI, but pre-clinical evidence supports the potential for benefit during the acute phase of injury. TBI Recovery Managing TBI involves a combination of stabilization, symptom relief, and rehabilitation, each playing a crucial role in recovery. Red Light Therapy is a safe and effective tool that can support healing throughout all three stages. While it can be conveniently done at home using a Red Light Therapy device, professional supervision is recommended during the acute phase to ensure safe and effective application. When exploring the range of available options, here are four things to consider: Light wavelength – The wavelength of light determines its color, with red light in the range of 620-700nm and near infrared light in the range of 700-1100nm. Although near infrared has been used most often to support healing from TBI, some studies have also found benefit from red light. Light with wavelengths between 600 and 1300nm have been found to penetrate maximally into the brain. So, look for products that provide both RL and NIRL in combination. Light intensity - Light intensity refers to the amount of light being delivered by a device, also referred to as power density. Studies of Red Light Therapy and TBI have used a range of intensities, from 10-100mW/cm2, and there is no clear indication that a particular intensity must be used. Devices across a range of intensities may provide benefit, and consumers aren’t limited to a specific intensity range. Type of device - Your personal level of comfort with a device is important. If it isn’t easy to use, and if it doesn’t feel good on your body, you probably won’t use it consistently. Many consumers find the most convenient devices to use are wireless, with a rechargeable battery. It is also important to use a device that can be adjusted to fit snugly on the head. Think about your personal preferences and choose a device that fits your criteria. Light Source - Light therapy is administered using either laser or LED lights. While early light therapy research was done using lasers, LED lights have become much more popular over the last decade. For at home use, look for a device that uses LED lights as safe and affordable option. The next step after selecting a Red Light Therapy device is to determine the treatment protocol. During the acute phase of TBI, it is recommended to consult with your health care provider to get their professional guidance regarding the most appropriate protocol for your case. During the chronic phase of TBI, support from a health care professional is also recommended, but people may be more independent during this period. Based on available clinical research, 10-40 minute treatment sessions, 3 to 5 times a week, are recommended. Do not exceed more than one session every 24 hours. Conclusion Red Light Therapy is a safe, affordable, and highly effective tool for supporting at-home recovery from TBI. By targeting the three core drivers of brain injury—oxidative stress, impaired metabolism, and neuroinflammation—it offers a scientifically backed approach to healing. Research suggests benefits across all stages of TBI, from the critical early hours to years post-injury. When choosing a device, look for red and near-infrared LED technology that aligns with your needs for comfort and convenience, empowering you to take an active role in your recovery. Shop Red Light Therapy Head Wrap For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/
Learn moreIncandescent vs LED Lights in Red Light Therapy
Red Light Therapy has been investigated in thousands of research studies over the last 50 years. Until the early 2000’s, most studies used lasers as the light source, but more recently, LED lights have become popular due to their affordability, safety, and ease of at-home use. LED lights are now widely used in Red Light Therapy devices, including the devices we make at Fringe. Other light sources, such as incandescent lights, are also sometimes promoted for use in Red Light Therapy, but it’s important to recognize that incandescent lights are not equivalent to LED’s when it comes to reaping the well-recognized benefits of this powerful healing modality. In this article, we’ll explore the characteristics of LED and incandescent lights, how the two light types can (and cannot) be used in Red Light Therapy, and what to look for in a Red Light Therapy device. Comparison of LED and Incandescent Lights LED lights have many important characteristics that are superior to incandescent lights, including: Characteristics LED Incandescent Energy Efficiency 80-90% more efficient than incandescent, as most energy is converted to light Very inefficient – 90 to 95% of energy is lost as heat, and only 5 to 10% is converted to light Lifespan 25,000 to 50,000 hours (10 to 25x longer than incandescent) 1,000 to 2,000 hours (needs frequent replacement Heat Output Minimal heat emission, stays cool to the touch High heat emission, can become too hot to touch Long-Term Cost Lower long-term cost due to energy savings and longer lifespan Higher long-term cost due to frequent replacements and high energy use Durability Shock-resistant, does not break easily Fragile, glass can break easily Environmental Impact Eco-friendly, no toxic materials, low energy consumption Higher energy use, shorter lifespan, increases waste There are also some areas where LED’s can be inferior to incandescent lights, including: Characteristics LED Incandescent Flicker Potential Some LEDs flicker which can cause eye strain No flicker; provides continuous, steady light EMF Emission May emit higher EMF’s due to electronic drivers Minimal EMF emission, since it does not use electronic drivers Blue Light Exposure Can be quite high Low, more natural warm light However, NONE of these characteristics are necessarily an issue with Red Light Therapy devices. Why we don’t NECESSARILY need to be concerned about these limitations (Flicker, EMF, Blue Light Exposure) with Red Light Therapy devices: Many Red Light Therapy devices do not flicker – a reputable company will demonstrate this using third party testing (we do!) EMF emission – it’s absolutely true that a LOT of Red Light Therapy devices emit way too many EMF’s, but they don’t have to. At Fringe, we’ve designed our panels so that the electronic driver is 3 feet away from the panel, so there is almost no EMF emission from the panel itself. Our wraps are battery powered; batteries create energy through chemical reactions, which generate negligeable EMF’s. Blue Light Exposure – Red Light Therapy devices contain red and near infrared LED’s, which don’t emit blue light (of course, blue light LED’s are also an option…!) What about Blue Light Therapy using LED’s? Isn’t blue light from LED lights harmful? This is true but isn’t the whole story. Blue light from devices like ipads, phones, etc. is found in a very narrow spectrum of wavelengths. This is “foreign” to our body, as it is different than the blue light that comes from the sun. In contrast, blue light used in Blue Light Therapy emits a wider spectrum of wavelengths that closely mimics the distribution of blue light in sunlight. This light spectrum has been found to be antimicrobial, which is why it is used for applications like acne. No matter what, though, it’s still important to avoid getting blue light in the eyes. Is light from an incandescent light the same as from an LED? Incandescent lights produce light in a “full spectrum”, including red and near (and also far) infrared light. This is what makes the light from incandescents “warm” in terms of color, and also generates a lot of heat, making them hot to the touch. It’s also why these lights are used for things like heating terrariums. In order to make an incandescent light exclusively red, a red film or coating is placed on the glass that filters out other colors allowing only the red (and sometimes infrared) wavelengths to pass through. The filament inside still produces other colors, but they’re mostly blocked by the coating. LED lights used in Red Light Therapy will produce light in the red (if using red diodes) or near infrared (if using near infrared diodes) spectrums. Many devices include both types of diode, and the type of light is produced by using a semiconductor material that naturally produces red or near infrared light. Red Light Therapy doesn’t use white LED lights like you would find in a house lamp. Red and near infrared light are the same in terms of wavelength no matter what the source. The difference is that incandescent lights produce full spectrum light and then block the other light from being emitted, while LED lights (red or near infrared) emit ONLY the light in that color spectrum. If the red and near infrared light is the same, can incandescent lights be used instead of LED’s in Red Light Therapy? Incandescent lights CAN be used to activate the eye to brain pathway that is responsible for some of the benefits of Red Light Therapy. In this pathway, photoreceptors in the retina are activated and influence the function of the suprachiasmatic nucleus in the brain. This helps regulate the circadian cycle and also has an influence on mood and stress hormones. These lights are great for lighting up a room. Incandescent lights CANNOT be used as easily as LED’s to activate the light to tissue pathway that is responsible for the majority of benefits of Red Light Therapy. In this pathway, light enters through the skin (or other tissue) and activates photoreceptors in cells, such as cytochrome c oxidase in mitochondria. To achieve this benefit, the skin/tissue has to be close (6 inches or less) away from the light source. Because incandescent lights get hot and are fragile, they aren’t a substitute for durable LED’s that don’t generate much heat. Incandescent bulbs also generate scattered light, which doesn’t allow for good skin/tissue penetration. There is limited research showing that under some circumstances, incandescent lights may activate this pathway, but their functional limitations do not make them a substitute for LED’s. Most of the benefits of Red Light Therapy (reduced inflammation, faster tissue healing, reduced oxidative stress) comes from the light to tissue pathway. Incandescent lights do not work to activate this pathway effectively. It’s also important to note that almost none of the benefits of Red Light Therapy that have been observed in thousands of research studies over the last 50 years used incandescent light, with most studies using laser or LED light. How do I know if my Red Light Therapy device is safe to use? Here are some things to look for: Use of red and near infrared light in evidence-based spectrums. Fringe Red Light Therapy devices use red light at 660nm and near infrared light at 850nm, which have been demonstrated in many research studies to be beneficial. No flicker Low to no EMF’s. Low irradiance (this is also called power or intensity. And yup, you want this low. A lot of companies are selling products that are quite high intensity, and this can potentially be harmful). Irradiance in the range of 20-40mW/cm2 mimics the sun, and has been shown in multiple research studies to be both safe and effective. A good company will prove these by sharing analyses done by third party testing. Why choose Fringe Red Light Therapy devices? We use evidence-backed wavelengths of red and near infrared light. Our devices are no flicker and generate low to no EMF’s. We use a safe and effective sun-like intensity of light, at between 20 and 40mW/cm2. All of our products are tested by an independent third party lab, and we share this analysis with our consumers. Our products are created by a team of medical professionals who carefully review and use published scientific evidence to inform how we manufacture. Take home message: Incandescent lights are a great option for lighting up a room, creating a warm and ambient red light that may have benefits related to activation of the eye to brain pathway which helps to regulate the circadian rhythm and mood. Incandescent lights cannot be used as a substitute for LED lights to activate the tissue to cell pathway that is responsible for benefits including reduced inflammation, decreased oxidative stress, and improved tissue healing. Of the thousands of research studies on Red Light Therapy, only a small number used incandescent lights, so their clinical efficacy has not been clearly demonstrated. High-quality Red Light Therapy devices will use both red and near infrared LED lights and will be no flicker, generate low to no EMFS, and deliver light at a sun-like intensity that is both safe and effective for everyone, including kids and pets.
Learn moreLight Therapy & Menopause
Menopause Menopause is the natural transition that occurs when a woman stops menstruating, which usually happens between the ages of 40 and 58. The term “transition” refers to a change from one state to another, which is a very apt descriptor for what happens during menopause. Hormonally speaking, menopause marks a shift to an entirely new hormonal milieu, which not surprisingly, can be quite challenging. Hormonal Changes During Menopause The hormonal changes that accompany menopause are dramatic. From perimenopause (the stage leading up to menopause) to post-menopause (the stage following menopause), levels of estrogen and progesterone drop to a fraction of their previous levels. This sharp decline is not linear, instead showing fluctuations that can create a whirlwind of physical and psychological symptoms. Levels of testosterone also decrease during this transition. The effects of menopause The effects of menopause on the brain and body are similarly dramatic. Although these vary widely between individuals, there are many common symptoms, including hot flashes, loss of libido, vaginal dryness, sleep issues, weight gain, dry skin, hair thinning, digestive changes, sexual dysfunction, urinary symptoms (including incontinence) and mood disturbances. Some menopausal symptoms are local, occurring mainly in the pelvic region, while others (such as hot flashes) are felt throughout the body. Similarly, some symptoms are transient while others cause persistent and long-term physical changes. The experience of menopausal symptoms is extremely common. Overall, it is estimated that 75-80% of women suffer from symptoms related to menopause, of which 20-30% are considered severe. Approximately 75% of women worldwide experience hot flashes, while 40-60% suffer from sleep issues. As many as 83% of women report experiencing vaginal dryness, often with associated pain during intercourse. Research has found that 9 in 10 women weren’t educated about menopause, and since talking about these symptoms has long been viewed as “taboo”, women often suffer menopause symptoms in silence, leaving them unable to access tools that might help to alleviate them. Improving access to supportive tools during menopause is a critical public health issue. This includes natural and alternative therapies, as well as novel tools such as light therapy. Light - including red, near infrared, and blue light – may help to alleviate several of the challenging symptoms of menopause, including sleep and mood issues, vaginal dryness and atrophy, hair loss, overactive bladder, sexual dysfunction, cognitive and digestive changes, and skin problems. Read on to learn how light therapy can be used to support women’s health during this important transitional period. Light therapy Before we can explore how light therapy can be used to support women’s health during menopause, we first need to answer the question: what is light therapy? The answer is really quite simple. Light therapy (also known as photobiomodulation) is the application of light with specific wavelengths to the body for the purposes of influencing biology. In theory, light therapy can use any wavelength of light, but the most commonly used are red, near infrared, and blue. The use of red and near infrared light is commonly referred to as “red light therapy”. All three wavelengths of light may be useful in supporting women during menopause, although red and near infrared light have the greatest utility. Research has shown that light therapy has many effects on a cellular level. Briefly, with red and/or near infrared light, the most notable observed effects include an increased production of cellular energy, reduced inflammation, decreased oxidative stress, decreased pain, increased blood flow, enhanced collagen and supportive tissue production, and improved microbiome health (gut and vagina). Blue light is mainly used to destroy pathogenic microorganisms like yeast and bacteria. Light Therapy & Menopause Given that there is such a wide range of menopausal symptoms (note that for simplicity, symptoms related to peri-, meno- and post-menopause are being considered here as “menopausal” symptoms), it is likely that the various physiological effects of light therapy will be more or less relevant for certain ones. For example, some of the changes seen during menopause – such as vaginal atrophy, dryness, and urinary incontinence - are due in part to a decrease in blood flow and loss of connective tissue in the pelvis. While specific research into using light therapy to treat these symptoms is still sparce, researchers have proposed that based on existing scientific evidence, red light therapy may alleviate these symptoms by stimulating the production of collagen and elastin, supporting bladder function, and enhancing blood flow. Many symptoms of menopause are also experienced in other states, and we can look to those conditions for clues regarding how to use light therapy to alleviate the same symptoms during menopause. This includes anxiety and depression, hair loss, sleep disturbances, acne, digestive issues, and infections. While research specific to these symptoms in menopausal women is lacking, there is clear evidence that light therapy (with red, near infrared, and/or blue light) can be helpful in other conditions, and we can extrapolate from there to the menopausal state. Based on the known physiological effects of light therapy, and the evidence of benefits in a range of clinical conditions, we propose that the use of red, near infrared, and/or blue light may help to alleviate several of the most common symptoms experienced by women during this life transition, including: Mood: Mood changes are a common experience during menopause, with many women reporting increases in anxiety and depression. Light therapy (with red and near infrared light) has been shown to reduce depressive symptoms in both humans and animals, likely due to improvements in mitochondrial function, increased brain blood flow, and decreased neuroinflammation. A 2009 clinical trial found a reduction in symptoms of depression and anxiety in as little as a single session. The effects of light therapy on mental health are so compelling that a recent systematic review concluded that it is “strongly recommended” as a treatment for moderate depressive disorder and is “recommended” for the treatment of anxiety disorder. Studies of red light therapy and depression often apply light therapy directly to the skull, while some use an intranasal approach. Cognition: Cognitive changes, such as memory loss, are also commonly experienced by women during menopause. Researchers have shown in a series of controlled clinical studies that near infrared light therapy improves cognition in young and middle-aged healthy adults when applied to the prefrontal cortex of the brain. Cognitive improvements were accompanied by changes in brain function, including increased brain blood flow. In 2019, a meta-analysis of all the research looking at the effects of light therapy (including near infrared light, or near infrared and red light in combination) found that the overall effect on cognition was positive, leading the authors to conclude that light therapy is a “cognitive-enhancing intervention in healthy individuals”. Hair Loss: Menopausal women frequently report hair loss and thinning. The ability of light therapy to induce hair growth was observed in studies conducted more than 50 years ago. Early clinical trials used primarily red light, and the effectiveness of these studies led to the development of several red light therapy devices for hair loss. Subsequent studies have shown that near infrared light also stimulates hair growth, with red and near infrared light improving hair growth in androgenetic alopecia, which is the most common type of hair loss that affects both men and women. Light impacts hair growth through effects on mitochondria, which lead to increases in the length of time the hair follicle spends in the growth phase. Overactive Bladder: Overactive bladder, involving a frequent urge to urinate, is a urinary symptom experienced during menopause. Overactive bladder often results in urinary incontinence. Although research related to light therapy and overactive bladder is limited, one study found that application of red light to the abdomen three times per day for 12 weeks resulted in a reduction of urinary incontinence as compared to a control group, suggesting a potential benefit in this condition. Skin Changes: During menopause, many women report skin changes, including acne, dryness, altered pigmentation and wrinkles. Light therapy has been widely used in spas and dermatology clinics for its effects on skin health, in addition to at-home use. Red and near infrared light is helpful in the treatment of wrinkles, psoriasis, acne, hyperpigmentation, and rosacea, while blue light is helpful in the treatment of acne. Studies show results such as smoother skin; wrinkle reduction and improved skin elasticity; and normalization of skin pigmentation. The effect of red light therapy on wrinkles can be quite dramatic, with one study showing a 30% decrease in eye wrinkle volume. Gut: Gut dysbiosis, involving changes in the gut microbiome, are common around the time of menopause. Estrogen is known to affect the gut microbiome and similarly, some of the microbes in the gut microbiome (called the estrobalome) are able to influence levels of estrogen in the body. Keeping the microbiome healthy during menopause is essential, and light therapy (with red and near infrared light) may provide some support. Animal research has shown that when red or near infrared light was applied to the abdomen of mice, the composition of the microbiome shifted to include more of a bacterial strain that is associated with better health. In humans, red and near infrared light applied to the abdomen of Parkinson’s disease patients modulated the composition of the gut microbiome, with a shift towards more “healthy” bacteria, and in a case report of a patient with breast cancer, application of near infrared light to the abdomen was associated with increased diversity of gut microbes, which is considered to be a healthy change Vaginal Dysbiosis: Similar to the gut, the vagina has a microbiome, and menopause can cause dysbiosis in this region as well. Hormone-induced dysbiosis can increase the vaginal pH and change the composition of the microbes, which is associated with bladder dysfunction and bladder pain syndrome. Light therapy, particularly with red and near infrared light, is proposed as being a positive modulator of the vaginal microbiome. There are several proposed mechanisms, including modulation of nitric oxide. Nitric oxide is important for the lactobacillus species that dominate in the vagina that are known to decrease during menopause. Sleep: As already mentioned, sleep disturbances are experienced by 40-60% of menopausal women. Light is a primary regulator of the body’s circadian rhythm, so it is not surprising that light therapy has effects on sleep. Application of red and near infrared light during wakefulness improves sleep quality in people with cognitive decline, Guillain-Barré Syndrome, fibromyalgia and stroke. When red light therapy is applied during sleep, there is an increased clearance of waste products from the brain and improved flow of cerebrospinal fluid, which are required for optimal brain health. Blue light triggers wakefulness, suppressing melatonin, so direct exposure of the eyes to blue light should be limited to daytime hours. Vaginal Infections: Vaginal infections with yeast and bacteria are more common during menopause due to the changes in estrogen, vaginal pH, and vaginal dryness that occur. In addition to their positive effects on the microbes in the gut and vagina, red and near infrared light have also been shown to have effects on pathogenic (harmful) microorganisms in the female pelvis. Red light has been shown to be helpful in treating vaginal candida, as has blue light. Specifically, blue light at 415nm (the same wavelength as in the Fringe Pelvic Wand) had the most potent anti-candida effects. Blue light has also been shown to be helpful in the treatment of vulvovaginitis. Vaginal Atrophy: Vaginal Atrophy, Dryness & Sexual Dysfunction: The loss of estrogen during menopause causes many changes to the integrity of tissues in the vagina. This results in tissue atrophy and dryness, which can cause great discomfort, especially during sex. The main structural connective tissues are collagen and elastin, which provide strength and flexibility to the vagina. These changes occur for a variety of reasons, including a decrease in blood flow which results from the loss of estrogen. Application of red and near infrared light is known to increase blood flow by increasing levels of nitric oxide. It has also been shown to increase the synthesis of collagen and other supportive connective tissue including elastin. Suggesting that red and near infrared light may help with tissue support and rejuvenation during menopause. Light Therapy Products for Menopause While early research on light therapy used primarily lasers, more recent research has found that LED’s can also be used, which also have the advantage of applying light to a larger area of the body as well as an improved safety profile. The use of LED in red/near infrared/blue light therapy devices has also greatly reduced the cost of treatment, making it something that can be done in the comfort of one’s own home. A wide range of products are available, each of which is uniquely suited to address specific needs. The four most useful light therapy products to address the symptoms of menopause are: Red light therapy panel Panels usually deliver red and near infrared light, ideally with the option to use separately or in combination. Panels can be used to treat most body parts, including the face, chest and back. They’re great for supporting sleep and mood, when light should be entering through the eyes. They can also support digestion when directed towards the skin of the abdomen, as well as the skin on the face. The Fringe Red Light Therapy Panel delivers both wavelengths of light at the same “sweet spot” intensity as the sun. shop our panel Red light therapy wraps Red Light Therapy Wraps deliver light directly to the skin and can be applied to specific body parts, such as the head and abdomen. They should also deliver both red and near infrared light. Wraps have the advantage of being cordless and very convenient to use. The Fringe Red Light Therapy Head Wrap delivers light to the head (including red and two wavelengths of near infrared light) and is ideally suited to support mood, cognition, and hair loss. The Fringe Red Light Therapy Wrap has a rectangular shape and can be applied to the abdomen to support bladder function and digestion. shop our wraps Light therapy face mask Like wraps, face masks deliver light directly to the skin but are specifically contoured to the face. Due to the antimicrobial effects of blue light, it should be included in face masks for the treatment of acne along with red and near infrared light. The Fringe Red Light Therapy Face Mask delivers all three wavelengths of light to support skin health, including acne, wrinkles, pigmentation, and more. shop the mask Light therapy pelvic wand Light therapy pelvic wands are inserted directly into the vagina, delivering light directly to the vaginal tissues that are affected by menopausal hormonal changes. The Fringe Light Therapy Wand delivers red, near infrared, and/or blue light to support blood flow and tissue rejuvenation, which may help alleviate vaginal dryness, atrophy, and sexual dysfunction. shop the wand To recap Menopause is a time of dramatic hormonal changes, which create uncomfortable symptoms for many women. Light therapy is a safe and effective tool that may be used to alleviate a wide range of menopausal symptoms in the comfort of one’s own home. Red and near infrared light provide support for symptoms including sleep and mood issues, cognitive changes, hair loss, gut and vaginal dysbiosis, skin problems, and vaginal tissue changes, while blue light may provide antimicrobial activity for menopausal acne and vaginal infections. Many different light therapy products are available - including panels, wraps, face masks, and pelvic wands – that provide light therapy support for different symptoms. Choose products that use LED lights to deliver red, infrared red, and blue light (where appropriate) at approximately the same intensity of the sun for best results. For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/
Learn moreRed Light Therapy vs Ice
Red Light Therapy vs Ice. If you were to take a sample of doctors and athletic trainers and ask them what therapy they recommend that people use for post-exercise muscle recovery, you are guaranteed to find that a majority will tell you to apply ice. Cryotherapy or icing has long been considered the gold standard for dealing with pretty much any kind of inflammatory process, including the muscle inflammation that occurs following strenuous exercise. Cryotherapy is a therapeutic technique that involves exposing the body or specific areas to extremely cold temperatures, typically using ice packs, cold water immersion, or specialized cryochambers. But research has now clearly shown that when you put icing head-to-head with Red Light Therapy – which uses red and/or near infrared light to influence biology - and look at which one works better to support exercise recovery, Red Light Therapy consistently comes out on top. In 2019, a scientific article was published that reviewed three clinical trials and two animal studies comparing cryotherapy to Red Light Therapy. Each human clinical trial administered both red and near infrared light, while the two animal studies used near infrared light only, and light or cryotherapy were applied following exercise. The outcome for each study was post-exercise muscle recovery. All five studies found that Red Light Therapy was superior to cryotherapy at improving outcomes related to exercise recovery. This included decreased delayed onset muscle soreness and reduced muscle inflammation. The research also showed that in contrast to Red Light Therapy, cryotherapy did nothing to prevent muscle damage from occurring following strenuous exercise, since markers of muscle damage like creatine kinase were only reduced with Red Light Therapy. The superiority of Red Light Therapy over cryotherapy makes perfect sense when you consider the mechanisms of how the two modalities work. In a nutshell, red light therapy stimulates mitochondria to produce energy and modulate oxidative stress, decreasing cellular markers of inflammation. Red Light Therapy also induces cellular changes like increasing the production of growth factors. This is how it can have effects such as decreasing inflammation and healing damaged muscle fibers, and how it can positively influence many aspects of exercise recovery. In contrast, cryotherapy constricts blood vessels and decreases blood flow, which leads to less edema formation (swelling). This might reduce inflammation and decrease pain, but it really does nothing on a cellular level to support healing. In fact, it’s been argued by some experts to do the opposite. Several criticisms of cryotherapy have been raised, including that it only provides temporary relief and does not promote long-term healing. The studies described in this analysis used light that was quite low in intensity. Light intensity refers to the amount of light being delivered by a device. It is also sometimes called irradiance, and it’s usually measured in units called mW/cm2. Red Light Therapy devices on the market vary widely in terms of their intensity. While it’s common to see marketing claims that high intensity products (at upwards of 100mw/cm2) are needed to reap the benefits of Red Light Therapy, this research (and a lot of other studies too), show that this is false. When it comes to using Red Light Therapy for post-exercise muscle recovery, research has clearly shown that more is not better. Instead of high intensity products, it’s best to use a device that delivers both red and near infrared light at a low to moderate intensity. Fringe Red Light Therapy products are great options for post-exercise support, delivering the optimal intensity of light at between 20 and 40mw/cm2. This is like the intensity of the sun. Fringe Red Light Therapy wraps even have the advantage of being portable and cordless, offering the flexibility of immediate use, including on the sideline! So, the next time you have a hard workout, reach for a Red Light Therapy device instead of ice to support muscle healing. And the advantages of Red Light Therapy over cryotherapy extend to healing for other conditions as well. Basically, you can use Red Light Therapy for anything that you would consider using ice for. By using Red Light Therapy instead, you’ll not only decrease pain and inflammation, but you’ll also activate cellular healing mechanisms that will help you to feel better faster. For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/
Learn moreLight Therapy and Vibration for Female Pelvic Health
One of our missions at Fringe is to create high quality, evidence-based light therapy products, and to make them readily accessible to consumers. Our goal is to help people heal from the conditions that commonly ail them – like arthritis, post-exercise muscle soreness, and eczema (just to name a few) - in the comfort of their own homes. Recently, we turned our attention to some of the more common conditions affecting women and those born female at birth specifically: disorders of the female pelvis. Disorders related to female pelvic health (including pelvic floor pain and dysfunction, urinary incontinence, sexual dysfunction, and vaginal infections) are incredibly common, affecting up to 50% of the population at some point in their lives. shop fringe pelvic wand Enter, the fringe pelvic wand In response, we made the Fringe Pelvic Wand - which combines light therapy with vibration, two well-established healing modalities - which may support recovery from these challenging issues. What is red light? Light therapy (also known as photobiomodulation) is the application of light with specific wavelengths to the body for the purposes of influencing biology. The most common form of light therapy uses red light, which is visible as the color red, and/or near infrared light, which is not visible but can be felt as heat. Blue light is also used in many light therapy products, mainly for its antimicrobial effects. Red, near infrared, and blue light are naturally produced by the sun, which gives off solar radiation. The term radiation describes energy that is transmitted in the form of waves or particles. The spectrum of light in our environment consists of both light we can see (visible light) and light that our eyes can’t perceive (invisible light). This is called the electromagnetic spectrum. The visible light spectrum is quite narrow, consisting of wavelengths that range from 400 to 700nm and span from violet to red in color. Blue and red light are part of this visible light spectrum, while near infrared light is not. Different colors of light have different depths of skin penetration, with red and near infrared light penetrating the deepest. While early research on light therapy used primarily lasers, more recent research has found that LED’s can also be used, which also have the advantage of applying light to a larger area of the body as well as an improved safety profile. The use of LED in red/near infrared/blue light therapy devices has also greatly reduced the cost of treatment, making it something that can be done in the comfort of one’s own home. Both laser and LED lights have been used in research and practice to support pelvic health. Light therapy delivers light at a measurable level of intensity, which can be generally classified as low, moderate, and high. The intensity of sunlight is between 20 and 40mW/cm2, which is described as the “sweet spot” between higher intensities, which can have harmful effects, and lower intensities, which will have no effect at all. This range is optimal for healing while minimizing adverse effects, and is the range used in the Fringe Pelvic Wand. How might light therapy support female pelvic health? Light therapy may have physiological effects related to female pelvic health, including: Tissue Rejuvenation Loss of connective tissue, such as collagen and elastin, in the female pelvis is commonly experienced by women as they age and can also occur because of childbirth and infections. Through its effects on mitochondria, light therapy (especially red and near infrared light) may increase cellular energy production and increase connective tissue production. Light therapy may also modulate the production of reactive oxygen species, causing a shift towards tissue rejuvenation rather than breakdown, and may support muscle strengthening. Reduced Inflammation & Pain Chronic pain is commonly associated with disorders of the pelvic floor, which may also be associated with pelvic inflammation. Light therapy (especially with red and near infrared light) may have powerful effects on inflammation. Studies have found that light therapy may affect levels of many molecules involved in inflammation, including reactive oxygen species, reactive nitrogen species, and prostaglandins. Increased Blood Flow A decrease in blood flow to tissues in the female pelvis, especially the vagina, occur with age. This loss of blood flow negatively affects tissues by reducing the supply of oxygen and nutrients and contributes to age associated changes such as vaginal atrophy. Light therapy (especially red and near infrared light) may increase blood flow in two ways. First, it may increase levels of nitric oxide through its effects on the mitochondria, which causes vasodilation. The dilation of blood vessels allows more blood to flow through. Second, it may increase angiogenesis, which is the synthesis of new blood vessels. A greater density of blood vessels may increase the delivery of blood to tissues. Effects on Microorganisms Infections with pathogenic microorganisms in the female pelvis are quite common, and include bacteria (such as chlamydia), fungi (such as candida), and viruses (such as HPV). The vagina also naturally hosts the vaginal microbiome, which has a balance of microorganisms. When imbalanced, susceptibility to infections and bacterial vaginosis is increased. Light may have effects on microorganisms, both pathogenic and non-pathogenic. Blue light may have powerful effects on pathogenic microbes that can infect the vagina, such as candida, while red light may have positive effects on the microbes that comprise the microbiome, including the vaginal microbiome. Some clinical conditions related to female pelvic health that may improve with light therapy include: Vaginal candidiasis Human papillomavirus and associated vaginitis and cervicitis Vulvovaginitis Chronic pelvic pain Urinary incontinence and sexual dysfunction Overactive bladder Interstitial cystitis/bladder pain syndrome Menopause Episiotomy recovery What is vibration therapy? Vibration therapy may have physiological effects related to female pelvic health, including: Tissue Rejuvenation Vibration therapy may have many effects on cells associated with the structural integrity of the female pelvic. Collagen in particular may respond to vibration therapy, especially at low magnitudes, and both collagen and muscle formation respond well to low magnitude vibration at between 8 and 10Hz. Increased Blood Flow Vibration therapy may increase blood flow, after as little as 10 minutes of therapy. Increasing blood flow helps to perfuse tissues with oxygen and nutrients and improve function and speed healing. Muscle Tone Regulation While proper functioning of the pelvic floor muscles is integral to bowel, bladder, and sexual health, in many women these muscles are weak. Others experience chronic hypertonicity in muscles of the pelvic floor, which is also suboptimal. Vibration therapy may regulate muscle tone in two ways. First, it may decrease spasticity in muscles that are overactive. Second, it may improve the potential to voluntarily contract muscles, such as those of the pelvic floor, which are poorly controlled in between 30 and 50% of women, and in this way activate and strengthen the muscle. Muscle tone regulation is accomplished by activating muscles via a spinal reflex and increasing blood flow. Decreased Pain Vibration therapy may reduce many different pain types, including neuropathic pain, low back pain, and muscle pain. This may happen via several mechanisms, such as regulating muscle tone and increasing blood flow. Some clinical conditions related to female pelvic health that may improve with vibration therapy include Urinary incontinence Pelvic floor dysfunction Vulvodynia (a pelvic pain condition) Pelvic pain penetration disorder Sexual dysfunction The Fringe Pelvic Wand The Fringe Pelvic Wand delivers three wavelengths of light via three modes: + Mode 1 - Deep Rejuvenation MODE ONE - red/near infrared light (630nm & 830nm): delivers both red (630nm) and near infrared (830nm) light to the pelvic tissues. This mode may help with pelvic pain and inflammation; bladder and muscle health; optimizing the vaginal microbiome; increasing the production of collagen and elastin; and improving blood flow and tissue health. Use Mode 1 for deep pelvic rejuvenation if you are NOT sensitive to light or heat. + Mode 2 - Antimicrobial MODE TWO - Blue Light (415 nm): delivers blue light (465nm) to the pelvic tissues. This mode may support the destruction of microbes including fungus and bacteria and healing from yeast infections and bacterial vaginosis. + Mode 3 - Rejuvenation MODE THREE - Red Light (630 nm): delivers only red (630nm) light to the pelvic tissues. This mode may help with pelvic pain and inflammation; bladder and muscle health; optimizing the vaginal microbiome; increasing the production of collagen and elastin; and improving blood flow and tissue health. Use Mode 3 for pelvic rejuvenation if you ARE sensitive to light or heat. The Fringe Pelvic Wand also delivers optional vibration, via four modes: + Mode 1 - 10hz (default mode) MODE ONE: provides very low frequency vibration which may help to support muscle relaxation and pain reduction. + Mode 2 - 50hz MODE TWO: provides low/moderate frequency vibration which may help to support muscle relaxation, reduce pain, and increase awareness of pelvic muscle function. Mode 2 can be combined with gentle pelvic floor exercises. + Mode 3 - 90hz MODE THREE: Provides moderate/high frequency vibration that increases awareness of pelvic muscle function and may help to support pelvic muscle contraction. Mode 3 can be combined with moderately active pelvic floor exercises. + Mode 4 - 120hz MODE FOUR: provides high frequency vibration that may help to support strengthening of pelvic muscles. Mode 4 can be combined with active pelvic floor exercises. Let's get started How to use the fringe pelvic wand Light & Vibration Therapy Safety The safety of light and vibration therapy has been demonstrated in thousands of research studies. However, there are some precautions to be aware of before you begin your therapeutic journey.Photosensitivity is the main contraindication to light therapy. If you are sensitive to light or are using medications that increase light sensitivity (see https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7672668/ for a recent list), you may need to reduce treatment time, interval, and/or frequency, as well as reduce light intensity. Light & Vibration Therapy Safety Here are some other precautions to consider. Please don’t: Exceed the recommended treatment times and frequency. Use on open fresh wounds. Use in combination with lotions, balms or other topical products that contain heat producing ingredients. Use with a non-water based lubricant. If you’re pregnant, we recommend checking with your health care provider to see if they think it’s appropriate for you to use the Fringe Pelvic Health Wand. They can assess your unique health needs and determine if light and vibration therapy is right for you. However, we do know that it’s a great tool to use postpartum when it may help to support healing and recovery of pelvic tissues. Co-Author Elizabeth Frey, FCAMPT, MCISC (MANIP), MSc. PT, MSc, BPHE, BSc, MCPA - Fringe Pelvic Health Advisor Liz holds a BSc and BPHE from Queen’s University; a MSc in Exercise Physiology from the University of Toronto, a MSc (PT) from McMaster University, and a MCISC (Manip) from University of Western Ontario. Liz is a clinic owner and practicing physiotherapist with a specialty in pelvic health physiotherapy. She is a clinical lab facilitator at the University of Toronto, and a clinical supervisor for physiotherapy students. As an orthopaedic and pelvic health physiotherapist, Liz integrates her over 10 years of clinical expertise to provide a unique whole-body approach to wellness. Liz’s practice focuses on helping women navigate pregnancy, menopause, and everything in between. The contents in this blog; such as text, content, graphics are intended for educational purposes only. The Content is not intended to substitute for professional medical advice, diagnosis, or treatment. Always seek the advice of your healthcare provider.
Learn moreLight Therapy for Inflammation
Inflammation is one of the most popular topics in healthcare, and rightfully so. It is a hallmark of many diseases currently ravaging modern society, such as arthritis, ulcerative colitis, inflammatory bowel disease, heart disease, diabetes, cancer, Alzheimer’s Disease, and depression. Inflammation is also associated with acute diseases involving the heart, pancreas, liver, and other organs, as well as trauma and infection. The personal and economic burden of these diseases cannot be overstated. Treatment of inflammation associated diseases makes up the majority of health care spending in the US, costing billions of dollars annually. There are also indirect costs of illness, such as reduced work and productivity. The most common treatments for inflammation are pharmaceuticals, including prescription (such as Celebrex) and the over-the-counter drugs (such as Aspirin and Alleve). However, many of these drugs have serious side effects, such as hypersensitivity reactions and ulcers. Given these risks, many people are turning to non-invasive therapies to fight inflammation, some of which are highly effective and have far fewer side effects than their pharmaceutical counterparts. One of these is treatment with red and near infrared light (also called red light therapy or photobiomodulation), which uses light waves at specific frequencies to decrease inflammation at a cellular level. Red Light Therapy The term “red light therapy” usually describes the use of both red and near infrared light, although only the red light produced by the device is visible to the naked eye. Infrared light can still be perceived by the body as heat when it contacts skin. Red and near infrared light therapy is the application of artificially generated light in the red and near infrared spectral bands. Red and near infrared light are naturally produced by the sun, which gives off solar radiation. The term radiation describes energy that is transmitted in the form of waves or particles. The spectrum of light in our environment consists of both light we can see (visible light) and light that our eyes can’t perceive (invisible light). This is called the electromagnetic spectrum. The visible light spectrum is quite narrow, consisting of wavelengths that range from 400 to 700nm and span from violet to red in color. Red light is part of this visible light spectrum, while near infrared light is not. While early research on light therapy used primarily lasers, more recent research has found that LED’s can also be used, which also have the advantage of applying light to a larger area of the body as well as an improved safety profile. The use of LED in red/near infrared light therapy devices has also greatly reduced the cost of treatment, making it something that can be done in the comfort of one’s own home. Inflammation The inflammatory process is mediated by the immune system, specifically the innate (or non-specific) component. Inflammation protects the body from injury and infection. There are many goals of the inflammatory response, including reducing the extent of injury, limiting the spread of infection, and restoring the body back into balance. While we mostly think of inflammation as being harmful, it’s actually a natural and essential physiological function. Inflammation becomes harmful when it is uncontrolled, lasts for a long time, or just generally occurs when it shouldn’t. There are three types of inflammation, which are mainly defined by their length. Acute inflammation is short term, lasting days. This is what happens when you sprain your ankle, and it swells up, becomes warm, and may show color changes. That response is designed to limit movement, which prevents further injury and allows the damaged tissue to heal. Sub-acute inflammation lasts from two to six weeks, and often follows acute inflammation as healing progresses. The response here is similar, but less intense, than acute inflammation. Chronic inflammation lasts for months or even years, and at this point, inflammation has ceased to be a normal (and healthy) response to a stimulus and has become pathological. Chronic inflammation is the type that is associated with most diseases. It is also associated with oxidative stress. Chronic inflammation is not associated with visible signs of inflammation (such as redness, heat, and swelling), so people often aren’t even aware it is happening. This contrasts with acute inflammation, which is usually visible and occurs because of trauma or infection. Red Light Therapy for Inflammation As described by Dr. Michael Hamblin, former Associate Professor at Harvard Medical School, “one of the most reproducible effects of is an overall reduction of inflammation”. Studies have found that light therapy affects levels of many molecules involved in inflammation, including reactive oxygen species, reactive nitrogen species, and prostaglandins. Light therapy has even been found to reduce inflammation in the brain, known as neuroinflammation. Red light therapy has been shown to have anti-inflammatory effects in the following conditions: Brain Disorders – Neuroinflammation is one of the foundational pathologies underlying a wide range of brain disorders. Light therapy has been found to decrease inflammation in Alzheimer’s Disease, as well as to improve cognitive function. Several clinical trials have been published which have shown positive results. Most studies have exclusively used near infrared light, which has been found to penetrate more deeply into the brain. Light therapy has also been found to decrease inflammation and improve recovery after a stroke. When used to treat brain disorders, light therapy is usually applied to the head area, using devices such as hats and helmets. Traumatic Brain Injury - Traumatic brain injuries (TBI) occur when there is a violent blow to the head. Approximately 17% of people with repeated TBI progress to chronic traumatic encephalitis (CTE), a brain disorder caused by repeated head injuries. Concussions are another common type of TBI. TBI’s result in acute neuroinflammation, which can become a chronic problem if not treated properly. Research using light therapy (both red and near infrared) for TBI has looked at both immediate and chronic effects in animal and human models. Animal studies have shown a reduction in the size of the brain lesion when light therapy was applied to the head immediately following trauma, which correlated with the severity of neurological symptoms, which may be due (in part) to decreased inflammation. Depression – Neuroinflammation is similarly found in people suffering from depression, and it is thought to be a key factor and therapeutic target in depressive disorders. Several clinical trials of light therapy in depression have been conducted, all of which used near infrared light applied directly to the head. A 2022 systematic review concluded that light therapy “can be classified as strongly recommended for moderate grade of major depressive disorder”. Similarly, a 2023 meta-analysis concluded that there is a “promising role of in the treatment of depressive symptoms”. Gut Disorders – Inflammatory gut diseases like colitis and inflammatory bowel diseases may benefit from red light therapy. Research has found that application of red light to the abdomen of rats with experimentally induced colitis (a form of inflammatory bowel disease) improved many markers of gut health, including reducing inflammation. There is interest in studying the use of light therapy to improve gut health in human subjects as well, with research currently ongoing to see if it helps patients with inflammatory bowel disease. When treating gut disorders, light therapy is usually applied directly to the abdomen. Pain - Pain creates a huge burden of disability, both personal and economic. There is evidence that red light therapy decreases many types of pain, including knee, neck, low-back, temporomandibular joint, and post-surgical pain. Red light therapy can also reduce pain associated with arthritis and fibromyalgia. One of the primary mechanisms of pain reduction by light therapy is by decreasing inflammation. Red light therapy also reduces pain by decreasing oxidative stress, reducing the sensitivity of neurons, and decreasing the transmission of pain related nerve impulses. Arthritis – In addition to reducing arthritis pain by decreasing inflammation, the anti-inflammatory effects of red light therapy on arthritis also yields other benefits. Inflammation in arthritis is responsible for much of the observed pathology, including cartilage breakdown. Treatment with red light therapy may have a range of positive effects, such as preserving joint function, avoiding joint deformities, and reducing drug side effects and toxicities. Delayed Onset Muscle Soreness – Delayed onset muscle soreness (DOMS) is pain that occurs in the muscles between 12 and 24 hours after a workout. DOMS is caused by tiny muscle tears that results in inflammation, which causes pain. Treatment with red light therapy to muscles after a strength training session has been shown to decrease markers of inflammation, as well as to improve other outcomes like decreased fatigue and increased protein synthesis. Injury – In addition to its anti-inflammatory effects on muscle tissue, including speeding recovery from post-exercise damage, red light therapy also reduces inflammation and speeds wound healing, such as from burn injuries. Red light therapy can also reduce inflammation and speed healing from injuries to bone, including fractures and more complex bone injuries that require the use ceramic materials. Tendon injuries also benefit from red light therapy. Skin Disorders – Many skin disorders are characterized by inflammation, including acne, psoriasis and eczema. Light therapies treat acne through anti-inflammatory and antimicrobial effects, and by decreasing the production of oil. Inflammatory acne is more responsive to light therapy than non-inflammatory acne, and studies have even found it to be superior to some medications. Red and near infrared light is also recommended in the treatment of psoriasis in part because of its anti-inflammatory effects. And in eczema, an inflammatory skin disease, treatment with near infrared light therapy has been found to decrease skin itching and lesions. Alopecia Areata – Alopecia Areata (AA) is an autoimmune disease that causes the body to attack its own hair follicles. This causes the hair to fall out, resulting in patches of baldness. AA can affect hair on any part of the body but is most common on the head. It is characterized by inflammation around hair follicles during the growth phase. The anti-inflammatory effects of light therapy may decrease this inflammation. In fact, treatment with red and near infrared light has been found to increase hair growth in bald patches. How To Use Red Light Therapy To Reduce Inflammation There is no single right way to use red light therapy to reduce inflammation. It all depends on what condition you are trying to treat and what your personal preferences are as far as treatment approach. The following are a few simple questions that can be used to guide you towards selecting the device that is most suitable for your needs: 1. What are your specific health concerns? Red light is usually applied to the affected body part, either directly in contact with the skin or at a distance of around 4 to 12 inches away. Some devices are location specific, such as knee wraps, head wraps or helmets, shoulder and neck wraps, or elbow and wrist red light wraps. Other devices are non-specific, such as square or rectangular light wraps, or red light panels. If you are dealing with a single, region-specific concern – such as knee arthritis or Alzheimer’s Disease - you may prefer to get a regionally targeted red light therapy device. However, if you are dealing with inflammation in more than one area of the body and want a device that can be used in multiple locations, a non-specific wrap may be preferable. Red light panels can also be used to address multiple body parts, although they may be difficult to position properly for some locations, such as the feet and ankles. 2. What are your preferred treatment conditions? Treatments using red light panels are most often done in a seated position, with the panel oriented towards the face, neck, torso, or other affected body part. They can also be done in a standing position, although this is not as relaxing. Lying down is possible if the treatment location allows it. Red light panels are wired and require the user to stay in the same position throughout the duration of the treatment. In contrast, treatments using red light wraps can be done in any position, including standing, sitting, and lying down. They can even be worn while moving around. Some red light wraps are wired, while others are wireless, with wireless models providing more flexibility. 3. What device specs should you look for? At home red light therapy devices almost always use LED’s as the light source. However, they do vary in other parameters, such as light wavelength(s) and intensity. When it comes to choosing the optimal wavelengths, you should look for light in the red and/or near infrared spectrums - but avoid the range of 700-780nm which has been found to be ineffective. Multi-wavelength devices including both red and near infrared light may be the most versatile. In terms of intensity, it has been found that it is ideal to mimic the intensity of the sun, which is around 24 mW/cm2 at the skin. This is described as the “sweet spot” between higher intensities, which can have harmful effects, and lower intensities, which will have no effect at all. Many devices on the market are at a much higher intensity than the sun, so choose a sun-mimicking product and don’t overdo it when it comes to treatment frequency and duration. Conclusion Red light therapy (with red and near infrared light) may be used to reduce inflammation in a wide range of diseases, both acute and chronic. There are very few contraindications to red light therapy, and it can be safely used at home as part of a regular wellness regime. Choose a device that suits your needs and preferred treatment conditions, and which delivers both red and near infrared light at an appropriate intensity. Combine red light therapy with an anti-inflammatory diet and supplements, regular exercise, stress management, and good sleep hygiene for best results. For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/
Learn moreRed Light Therapy for Fat Loss
Although often referred to as red light therapy, most red light devices emit both red and near infrared light. While early research on red light therapy primarily used lasers, recent research has found that LED’s can also be used, which have the advantage of applying light to a larger area of the body as well as an improved safety profile. The use of LED’s has also greatly reduced the cost of treatment, making it something that can be done in the comfort of one’s own home. A somewhat surprising effect of red light therapy is to promote fat loss, particularly when combined with exercise. A study of obese women found that red light therapy combined with exercise resulted in a higher percentage of fat loss than when exercise was combined with a placebo light. Another study found similar results, along with changes in levels of a marker associated with increasing brown adipose tissue, which improves metabolism. When combined with treadmill training, red light therapy decreases the appearance of cellulite and increases metabolism in the thighs. In addition to effects on metabolism, red light therapy may also cause fat cells to release their contents into the blood, where they can be metabolized or excreted. Two devices that can be used to promote fat loss and body shaping are light panels and body wraps. Fringe makes a 12x12 inch red light panel as well as a variety of light therapy wraps, including small and large wraps that can be wrapped around areas such as the thighs and abdomen. Research has found that benefits can be seen in as little as two 30-minute sessions per week over four weeks. And remember - when using red light therapy for fat loss, it is essential to combine it with a healthy diet and exercise regime. For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/
Learn moreHow Does Red Light Therapy Affect Reactive Oxygen Species and Oxidative Stress?
What are Reactive Oxygen Species? Reactive oxygen species (ROS) are oxygen containing molecules that have at least one unpaired electron. They are also referred to as free radicals. While ROS are generally regarded as “bad”, in fact they play important roles in our bodies, such as killing invading microorganisms. Short-lived ROS act as signals for the cell to carry out critical functions, and they can have a positive net effect on cellular function. All organisms that breathe oxygen produce ROS, which are a normal part of human physiology. However, ROS also have a dark side. Ideally, there is a balance between their production and removal, which is largely mediated by systems of antioxidant enzymes that are found all throughout the body. Dietary antioxidants (such as vitamin E) also help to keep ROS levels in check, and these are found widely in foods such as seeds, fruits, and vegetables. But when production of ROS exceeds their removal, the imbalance can lead to a condition known as oxidative stress. What is Oxidative Stress? Oxidative stress is defined as “an imbalance between production of oxidants and antioxidant defenses that may result in damage to biological systems”. It is a more important indicator of health than levels of ROS. An increase in ROS can paradoxically be associated a decrease in oxidative stress, especially if the activity of antioxidant enzymes is increased at the same time. In fact, an increase in ROS acts as a signal to turn up the activity of these enzymes. If the enzyme activity is greater than the increase in ROS, the net oxidative stress will be reduced. Of course, an increase in ROS can also be harmful, particularly when this increase persists over a long period of time. Oxidative stress is associated with most chronic diseases as well as ageing. How Does Red Light Therapy Affect ROS & Oxidative Stress? An increase in the production of ROS has been well documented as being associated with red light therapy. This occurs as a brief burst, with the amount produced being highly dependent on the characteristics of light exposure. The increase in ROS is due to the effects of red light therapy on cellular mitochondria, which is the main mechanism by which red light therapy exerts its beneficial effects. This begs the question: what do the ROS produced with red light therapy do in the cell? Are they harmful? How do they affect oxidative stress? The answer is complex, and four lines of evidence show that even though red light therapy can increase ROS production, this does not necessarily translate to an increase in oxidative stress. First, rather than increasing oxidative stress, the brief increase in ROS production that accompanies red light therapy is often associated with some of its benefits. For example, stem cell therapy is augmented by red light therapy as a direct result of the production of ROS. Similarly, in a review of 14 studies, red light therapy caused ROS levels to increase which helped bone cells to regenerate. An increase in ROS following red light therapy has also been shown to stimulate mitochondrial activity and to induce the growth of new brain cells. Since ROS are well known to act as signals for cells to carry out important functions, brief exposure to red light therapy can have long lasting effects. In fact, the ROS produced following red light therapy have been described as “good” reactive oxygen species. Second, studies have clearly shown that markers of oxidative stress can be decreased after red light therapy. Exercise provides a good example. In a comprehensive review of 8 studies, markers of oxidative stress as well as muscle damage, inflammation, and delayed onset muscle soreness were reduced in exercising athletes after treatment with red light therapy. These studies show that regardless of ROS levels, overall oxidative stress can be reduced with light therapy and this is associated with several benefits. Third, when it comes to oxidative stress, light intensity matters. When wounds are treated with low/moderate intensity red light therapy, markers of oxidative stress initially increase and then decrease dramatically as healing progresses. However, when wounds are treated with high intensity red light therapy, oxidative stress remains high. Similarly, levels of antioxidant enzyme activity increase with low/moderate intensity red light therapy but not with high intensity light. This suggests that low/moderate intensity red light therapy, but not high intensity reduces oxidative stress. Fourth, light intensity also matters when it comes to ROS production. In a study of stem cells, treatment with light at 5 J/cm2 increased ROS production while treatment with 2.5 or 10 J/cm2 decreased ROS production. The ROS produced at 5 J/cm2 was also associated with increased tissue regeneration. This has to do with the supply of light energy. A range of light energy will stimulate a response (measured by ROS production), but too little or too much energy will not have the same effect. This “biphasic effect” of red light therapy is well known. It is essentially a Goldilocks effect: When the dose of light is too low or too high, it is ineffective, while intermediate doses are beneficial. In fact, high doses of red light therapy may even being harmful. This may be at least partly explained by ROS production - when the light dose is too low, there is no ROS production and no beneficial downstream signaling effects. If the light dose is too high, ROS production is not balanced by their removal, and oxidative stress results. How Can I Safely Use Red Light Therapy? It is clear that treatment with red and near infrared light can produce a brief burst of ROS, and that this increase is directly associated with some of the benefits of red light therapy. However, it is also clear that excessive production of ROS is undesirable and can cause oxidative stress. Given this, how can red light therapy be used in a way that avoids overproduction of ROS? Very simply, it means not overdoing it in terms of light intensity, treatment duration, or session frequency. Here are a few general rules to follow: Use devices powered by LED, rather than laser light. Most at home devices use LEDs, and as a general rule, these are safer and lower intensity than laser light. Give preference to LED devices that are low/moderate intensity. The intensity of the sun is 20-40mW/cm2, which is a great target to aim for. High intensity red light devices should only be used for a few minutes at a time. Low/moderate intensity devices, such as those that mimic the intensity of the sun, can be used for up to 30 minutes. If using a high intensity device, limit session frequency to a few times per week. Low/moderate intensity devices can be used daily over different body parts, limiting each location to once per day. Conclusion Reactive oxygen species are generally understood to be harmful, but it’s clear that this is an oversimplification. When produced in excess, ROS are dangerous, but when production is balanced with removal, they play important roles in cellular functioning. Red light therapy can cause a brief burst of ROS, which usually decreases overall oxidative stress provided the dose of light is not excessive. When it comes to red light therapy, dose matters - and with a few simple considerations, it can be safely used to support health and well-being. For more information about Fringe light products, go to: https://fringeheals.com/shop-all-products/
Learn more